Improving cardiomyocyte model fidelity and utility via dynamic electrophysiology protocols and optimization algorithms
- PMID: 26661516
- PMCID: PMC4850194
- DOI: 10.1113/JP270618
Improving cardiomyocyte model fidelity and utility via dynamic electrophysiology protocols and optimization algorithms
Abstract
Mathematical models of cardiac electrophysiology are instrumental in determining mechanisms of cardiac arrhythmias. However, the foundation of a realistic multiscale heart model is only as strong as the underlying cell model. While there have been myriad advances in the improvement of cellular-level models, the identification of model parameters, such as ion channel conductances and rate constants, remains a challenging problem. The primary limitations to this process include: (1) such parameters are usually estimated from data recorded using standard electrophysiology voltage-clamp protocols that have not been developed with model building in mind, and (2) model parameters are typically tuned manually to subjectively match a desired output. Over the last decade, methods aimed at overcoming these disadvantages have emerged. These approaches include the use of optimization or fitting tools for parameter estimation and incorporating more extensive data for output matching. Here, we review recent advances in parameter estimation for cardiomyocyte models, focusing on the use of more complex electrophysiology protocols and global search heuristics. We also discuss future applications of such parameter identification, including development of cell-specific and patient-specific mathematical models to investigate arrhythmia mechanisms and predict therapy strategies.
© 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Figures
Similar articles
-
How to choose biomarkers in view of parameter estimation.Math Biosci. 2018 Sep;303:62-74. doi: 10.1016/j.mbs.2018.06.003. Epub 2018 Jun 28. Math Biosci. 2018. PMID: 29959949
-
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28. Physiol Rev. 2024. PMID: 38153307 Free PMC article. Review.
-
A robust multi-objective optimization framework to capture both cellular and intercellular properties in cardiac cellular model tuning: Analyzing different regions of membrane resistance profile in parameter fitting.PLoS One. 2019 Nov 15;14(11):e0225245. doi: 10.1371/journal.pone.0225245. eCollection 2019. PLoS One. 2019. PMID: 31730631 Free PMC article.
-
Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp.Biophys J. 2016 Aug 23;111(4):785-797. doi: 10.1016/j.bpj.2016.06.042. Biophys J. 2016. PMID: 27558722 Free PMC article.
-
Evolution of mathematical models of cardiomyocyte electrophysiology.Math Biosci. 2021 Apr;334:108567. doi: 10.1016/j.mbs.2021.108567. Epub 2021 Feb 16. Math Biosci. 2021. PMID: 33607174 Review.
Cited by
-
Detection of biomagnetic signals from induced pluripotent stem cell-derived cardiomyocytes using deep learning with simulation data.Sci Rep. 2024 Mar 27;14(1):7296. doi: 10.1038/s41598-024-58010-0. Sci Rep. 2024. PMID: 38538741 Free PMC article.
-
Neural network emulation of the human ventricular cardiomyocyte action potential for more efficient computations in pharmacological studies.Elife. 2024 Apr 10;12:RP91911. doi: 10.7554/eLife.91911. Elife. 2024. PMID: 38598284 Free PMC article.
-
How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels.Biophys J. 2018 Jan 23;114(2):259-266. doi: 10.1016/j.bpj.2017.11.024. Biophys J. 2018. PMID: 29401425 Free PMC article. Review.
-
Creating cell-specific computational models of stem cell-derived cardiomyocytes using optical experiments.PLoS Comput Biol. 2024 Sep 11;20(9):e1011806. doi: 10.1371/journal.pcbi.1011806. eCollection 2024 Sep. PLoS Comput Biol. 2024. PMID: 39259757 Free PMC article.
-
Reproducible model development in the cardiac electrophysiology Web Lab.Prog Biophys Mol Biol. 2018 Nov;139:3-14. doi: 10.1016/j.pbiomolbio.2018.05.011. Epub 2018 May 26. Prog Biophys Mol Biol. 2018. PMID: 29842853 Free PMC article.
References
-
- Bénardeau A, Hatem SN, Rücker‐Martin C, Le Grand B, L Macé, Dervanian P, Mercadier JJ & Coraboeuf E (1996). Contribution of Na+/Ca2+ exchange to action potential of human atrial myocytes. Am J Physiol 271, H1151–H1161. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources