A novel low-profile thin-film nitinol/silk endograft for treating small vascular diseases

J Biomed Mater Res B Appl Biomater. 2017 Apr;105(3):575-584. doi: 10.1002/jbm.b.33548. Epub 2015 Dec 10.

Abstract

Since the introduction of various endovascular graft materials such as expanded polytetrafluoroethylene (e-PTFE) and Dacron® polyester, they have been rapidly applied in endovascular devices for treating a variety of clinical situations. While present endovascular grafts have been successful in treating large blood vessels, there are still significant challenges and limitations for small and tortuous vessels to their use. Recently, our group has demonstrated the potential to use thin-film nitinol (TFN) as a novel material to develop endografts used in the treatment of a wide range of small vascular diseases because TFN is ultralow profile (that is, a few micrometers thick), relatively thromboresistant, and superelastic. While TFN has shown superior thromboresistance, its surface endothelialization is not rapid and sufficient. Therefore, our laboratory has been exploring the feasibility of using thin-film silk as a novel coating for facilitating rapid and confluent endothelial cell growth. The purpose of this study is to fabricate a low-profile composite endograft using thin layers of nitinol and silk, and to evaluate both thrombogenicity as well as endothelial cell and smooth muscle cell responses. This study also evaluates the functionality of the composite endograft using an in vitro blood circulation model. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 575-584, 2017.

Keywords: electrospinning; endovascular graft; silk fibroin; thin-film nitinol.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys / chemistry*
  • Animals
  • Blood Vessel Prosthesis*
  • Cattle
  • Cell Line
  • Endothelial Cells / metabolism*
  • Materials Testing*
  • Membranes, Artificial*
  • Models, Cardiovascular*
  • Myocytes, Smooth Muscle / metabolism*
  • Silk / chemistry*
  • Vascular Diseases / metabolism
  • Vascular Diseases / physiopathology
  • Vascular Diseases / surgery

Substances

  • Alloys
  • Membranes, Artificial
  • Silk
  • nitinol