Cardiac shockwave therapy improves myocardial function in patients with refractory coronary artery disease by promoting VEGF and IL-8 secretion to mediate the proliferation of endothelial progenitor cells

Exp Ther Med. 2015 Dec;10(6):2410-2416. doi: 10.3892/etm.2015.2820. Epub 2015 Oct 20.

Abstract

Cardiac shockwave therapy (CSWT) is a potential and effective remedy to promote revascularization in the ischemic myocardium of patients with refractory coronary heart disease (CHD). The technique is both safe and non-invasive; however, the underlying molecular mechanism remains unclear. The aim of this study was to evaluate the efficacy of CSWT in treating CHD patients and investigate a potential mechanism. A total of 26 patients with CHD were enrolled in the study, and CSWT was performed over a 3-month period. The efficacy of CSWT was assessed using several clinical parameters. Peripheral blood (PB) was collected prior to and following treatment. The number of circulating endothelial progenitor cells (EPCs) in the PB was counted using a flow cytometer, and the levels of vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), stromal cell-derived factor 1 and matrix metalloproteinase 9 in the PB were analyzed. Mononuclear cells were isolated from the PB and cultured in vitro. The EPCs and EPC-colony forming units (EPC-CFUs) in the PB mononuclear cell culture were counted using an inverted phase contrast microscope. Following CSWT, the tested clinical parameters were significantly improved. The levels of circulating EPCs, VEGF and IL-8 in the PB were significantly increased, as were the EPCs and EPC-CFUs from the PB mononuclear cell culture. We suggest that EPC proliferation, mediated by VEGF and IL-8 secretion, may be among the potential mechanisms associated with CSWT.

Keywords: cardiac shockwave therapy; coronary artery disease; endothelial progenitor cells; interleukin-8; vascular endothelial growth factor.