Background: Memory T cells (Tmem), particularly those resistant to costimulation blockade (CB), are a major barrier to transplant tolerance. The transcription factor Eomesodermin (Eomes) is critical for Tmem development and maintenance, but its expression by alloactivated T cells has not been examined in nonhuman primates.
Methods: We evaluated Eomes and coinhibitory cytotoxic T lymphocyte antigen-4 (CTLA4) expression by alloactivated rhesus monkey T cells in the presence of CTLA4 immunoglobulin, both in vitro and in renal allograft recipients treated with CTLA4Ig, with or without regulatory dendritic cell (DCreg) infusion.
Results: In normal monkeys, CD8+ T cells expressed significantly more Eomes than CD4+ T cells. By contrast, CD8+ T cells displayed minimal CTLA4. Among T cell subsets, central Tmem (Tcm) expressed the highest levels of Eomes. Notably, Eomes(lo)CTLA4(hi) cells displayed higher levels of CD25 and Foxp3 than Eomes(hi)CTLA4(lo) CD8+ T cells. After allostimulation, distinct proliferating Eomes(lo)CTLA4(hi) and Eomes(hi)CTLA4(lo) CD8+ T cell populations were identified, with a high proportion of Tcm being Eomes(lo)CTLA4(hi). CB with CTLA4Ig during allostimulation of CD8+ T cells reduced CTLA4 but not Eomes expression, significantly reducing Eomes(lo)CTLA4(hi) cells. After transplantation with CB and rapamycin, donor-reactive Eomes(lo)CTLA4(hi) CD8+ T cells were reduced. However, in monkeys also given DCreg, absolute numbers of these cells were elevated significantly.
Conclusions: Low Eomes and high CTLA4 expression by donor-reactive CD8+ Tmem is associated with prolonged renal allograft survival induced by DCreg infusion in CTLA4Ig-treated monkeys. Prolonged allograft survival associated with DCreg infusion may be related to maintenance of donor-reactive Eomes(lo)CTLA4(hi) Tcm.