Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 24 (1), 14-22

NIH Working Group Report-Using Genomic Information to Guide Weight Management: From Universal to Precision Treatment

Affiliations
Review

NIH Working Group Report-Using Genomic Information to Guide Weight Management: From Universal to Precision Treatment

Molly S Bray et al. Obesity (Silver Spring).

Erratum in

Abstract

Objective: Precision medicine utilizes genomic and other data to optimize and personalize treatment. Although more than 2,500 genetic tests are currently available, largely for extreme and/or rare phenotypes, the question remains whether this approach can be used for the treatment of common, complex conditions like obesity, inflammation, and insulin resistance, which underlie a host of metabolic diseases.

Methods: This review, developed from a Trans-NIH Conference titled "Genes, Behaviors, and Response to Weight Loss Interventions," provides an overview of the state of genetic and genomic research in the area of weight change and identifies key areas for future research.

Results: Although many loci have been identified that are associated with cross-sectional measures of obesity/body size, relatively little is known regarding the genes/loci that influence dynamic measures of weight change over time. Although successful short-term weight loss has been achieved using many different strategies, sustainable weight loss has proven elusive for many, and there are important gaps in our understanding of energy balance regulation.

Conclusions: Elucidating the molecular basis of variability in weight change has the potential to improve treatment outcomes and inform innovative approaches that can simultaneously take into account information from genomic and other sources in devising individualized treatment plans.

Comment in

Similar articles

See all similar articles

Cited by 26 articles

  • Genome-wide association study of morbid obesity in Han Chinese.
    Chiang KM, Chang HC, Yang HC, Chen CH, Chen HH, Lee WJ, Pan WH. Chiang KM, et al. BMC Genet. 2019 Dec 18;20(1):97. doi: 10.1186/s12863-019-0797-x. BMC Genet. 2019. PMID: 31852448 Free PMC article.
  • Ketogenic Diet: an Endocrinologist Perspective.
    Kuchkuntla AR, Shah M, Velapati S, Gershuni VM, Rajjo T, Nanda S, Hurt RT, Mundi MS. Kuchkuntla AR, et al. Curr Nutr Rep. 2019 Dec;8(4):402-410. doi: 10.1007/s13668-019-00297-x. Curr Nutr Rep. 2019. PMID: 31705484 Review.
  • A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity.
    Bradfield JP, Vogelezang S, Felix JF, Chesi A, Helgeland Ø, Horikoshi M, Karhunen V, Lowry E, Cousminer DL, Ahluwalia TS, Thiering E, Boh ET, Zafarmand MH, Vilor-Tejedor N, Wang CA, Joro R, Chen Z, Gauderman WJ, Pitkänen N, Parra EJ, Fernandez-Rhodes L, Alyass A, Monnereau C, Curtin JA, Have CT, McCormack SE, Hollensted M, Frithioff-Bøjsøe C, Valladares-Salgado A, Peralta-Romero J, Teo YY, Standl M, Leinonen JT, Holm JC, Peters T, Vioque J, Vrijheid M, Simpson A, Custovic A, Vaudel M, Canouil M, Lindi V, Atalay M, Kähönen M, Raitakari OT, van Schaik BDC, Berkowitz RI, Cole SA, Voruganti VS, Wang Y, Highland HM, Comuzzie AG, Butte NF, Justice AE, Gahagan S, Blanco E, Lehtimäki T, Lakka TA, Hebebrand J, Bonnefond A, Grarup N, Froguel P, Lyytikäinen LP, Cruz M, Kobes S, Hanson RL, Zemel BS, Hinney A, Teo KK, Meyre D, North KE, Gilliland FD, Bisgaard H, Bustamante M, Bonnelykke K, Pennell CE, Rivadeneira F, Uitterlinden AG, Baier LJ, Vrijkotte TGM, Heinrich J, Sørensen TIA, Saw SM, Pedersen O, Hansen T, Eriksson J, Widén E, McCarthy MI, Njølstad PR, Power C, Hyppönen E, Sebert S, Brown CD, Järvelin MR, Timpson NJ, Johansson S, Hakonarson H, Jaddoe VWV; Early Growth Genetics Consortium, Grant SFA. Bradfield JP, et al. Hum Mol Genet. 2019 Oct 1;28(19):3327-3338. doi: 10.1093/hmg/ddz161. Hum Mol Genet. 2019. PMID: 31504550
  • Plausible relationship between homocysteine and obesity risk via MTHFR gene: a meta-analysis of 38,317 individuals implementing Mendelian randomization.
    Fu L, Li YN, Luo D, Deng S, Hu YQ. Fu L, et al. Diabetes Metab Syndr Obes. 2019 Jul 23;12:1201-1212. doi: 10.2147/DMSO.S205379. eCollection 2019. Diabetes Metab Syndr Obes. 2019. PMID: 31413611 Free PMC article.
  • Gene-Environment Interactions on Body Fat Distribution.
    Li X, Qi L. Li X, et al. Int J Mol Sci. 2019 Jul 27;20(15):3690. doi: 10.3390/ijms20153690. Int J Mol Sci. 2019. PMID: 31357654 Free PMC article. Review.
See all "Cited by" articles

References

    1. World Health Organization. World Health Statistics 2015. Geneva, Switzerland: World Health Organization; 2015.
    1. Allison DB, Heshka S, Neale MC, Heymsfield SB. Race effects in the genetics of adolescents’ body mass index. Int J Obes Relat Metab Disord. 1994;18:363–368. - PubMed
    1. Chagnon YC, Perusse L, Bouchard C. Familial aggregation of obesity, candidate genes and quantitative trait loci. Curr Opin Lipidol. 1997;8:205–211. - PubMed
    1. Chung WK. An overview of mongenic and syndromic obesities in humans. Pediatr Blood Cancer. 2012;58:122–128. - PMC - PubMed
    1. Goran MI. Genetic influences on human energy expenditure and substrate utilization. Behav Genet. 1997;27:389–399. - PubMed

Publication types

Feedback