Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease

BMC Med Genet. 2015 Dec 22;16:116. doi: 10.1186/s12881-015-0261-3.

Abstract

Background: Autosomal recessive polycystic kidney disease (ARPKD) is an early-onset form of polycystic kidney disease that often leads to devastating outcomes for patients. ARPKD is caused by mutations in the PKHD1 gene, an extensive gene that encodes for the ciliary protein fibrocystin/polyductin. Next-generation sequencing is presently the best option for molecular diagnosis of ARPKD. Our aim was to set up the first study of ARPKD patients from the Czech Republic, to determine the composition of their mutations and genotype-phenotype correlations, along with establishment of next-generation sequencing of the PKHD1 gene that could be used for the diagnosis of ARPKD patients.

Methods: Mutational analysis of the PKHD1 gene was performed in 24 families using the amplicon-based next-generation sequencing (NGS) technique. In patients without 2 causal mutations identified by NGS, subsequent MLPA analysis of the PKHD1 gene was carried out.

Results: Two underlying mutations were detected in 54% of families (n = 13), one mutation in 13% of families (n = 3), and in 33% of families (n = 8) no mutation could be detected. Overall, seventeen different mutations (5 novel) were detected, including deletion of one exon. The detection rate in our study reached 60% in the entire cohort of patients; but 90% in the group of patients who fulfilled all clinical criteria of ARPKD, and 42% in the group of patients with unknown kidney pathology. The most frequent mutation was T36M, accounting for nearly 21% of all identified mutations.

Conclusions: Next-generation sequencing of the PKHD1 gene is a very useful method of molecular diagnosis in patients with a full clinical picture of ARPKD, and it has a high detection rate. Furthermore, its relatively low costs and rapidity allow the molecular genetic analysis of patients without the full clinical criteria of ARPKD, who might also have mutations in the PKHD1 gene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Child
  • Child, Preschool
  • Cohort Studies
  • Czech Republic
  • DNA Mutational Analysis / methods*
  • Exons / genetics
  • Family Health
  • Gene Frequency
  • Genes, Recessive
  • Genetic Testing / methods*
  • Genotype
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Infant
  • Introns / genetics
  • Mutation
  • Polycystic Kidney, Autosomal Recessive / diagnosis
  • Polycystic Kidney, Autosomal Recessive / genetics*
  • Polymorphism, Single Nucleotide
  • Receptors, Cell Surface / genetics*

Substances

  • PKHD1 protein, human
  • Receptors, Cell Surface