Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration

Opt Express. 2015 Dec 14;23(25):32429-40. doi: 10.1364/OE.23.032429.

Abstract

We report a highly sensitive, high Q-factor, label free and selective glucose sensor by using excessively tilted fiber grating (Ex-TFG) inscribed in the thin-cladding optical fiber (TCOF). Glucose oxidase (GOD) was covalently immobilized on optical fiber surface and the effectiveness of GOD immobilization was investigated by the fluorescence microscopy and highly accurate spectral interrogation method. In contrast to the long period grating (LPG) and optical fiber (OF) surface Plasmon resonance (SPR) based glucose sensors, the Ex-TFG configuration has merits of nearly independent cross sensitivity of the environmental temperature, simple fabrication method (no noble metal deposition or cladding etching) and high detection accuracy (or Q-factor). Our experimental results have shown that Ex-TFG in TCOF based sensor has a reliable and fast detection for the glucose concentration as low as 0.1~2.5mg/ml and a high sensitivity of ~1.514 nm·(mg/ml)⁻¹, which the detection accuracy is ~0.2857 nm⁻¹ at pH 5.2, and the limit of detection (LOD) is 0.013~0.02 mg/ml at the pH range of 5.2~7.4 by using an optical spectrum analyzer with a resolution of 0.02 nm.