Cyclotides are an interesting family of circular plant peptides. Their unique three-dimensional structure, comprising a head-to-tail circular backbone chain and three disulfide bonds, confers them stability against thermal, chemical, and enzymatic degradation. Their unique stability under extreme conditions creates an idea about the possibility of using harsh extraction methods such as microwave-assisted extraction (MAE) without affecting their structures. MAE has been introduced as a potent extraction method for extraction of natural compounds, but it is seldom used for peptide and protein extraction. In this work, microwave irradiation was applied to the extraction of cyclotides. The procedure was performed in various steps using a microwave instrument under different conditions. High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results show stability of cyclotide structures on microwave radiation. The influential parameters, including time, temperature, and the ratio of solvents that are affecting the MAE potency, were optimized. Optimal conditions were obtained at 20 min of irradiation time, 1200 W of system power in 60 °C, and methanol/water at the ratio of 90:10 (v/v) as solvent. The comparison of MAE results with maceration extraction shows that there are similarities between cyclotide sequences and extraction yields.
Keywords: Cyclopeptides; Microwave-assisted extraction; Vigno cyclotides; Viola ignobilis; Violaceae.
Copyright © 2015 Elsevier Inc. All rights reserved.