Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 28;120(3):566-71.
doi: 10.1021/acs.jpcb.5b09324. Epub 2016 Jan 13.

How Chain-Folding Crystal Growth Determines the Thermodynamic Stability of Polymer Crystals

Affiliations

How Chain-Folding Crystal Growth Determines the Thermodynamic Stability of Polymer Crystals

Xiaoming Jiang et al. J Phys Chem B. .

Abstract

Chain-folding is a habit of polymer crystallization, which yields limited lamellar thickness of polymer crystals and thus determines their thermodynamic stability. We performed dynamic Monte Carlo simulations of a lattice polymer model with chain-folded lamellar crystal growth stopped by a critical spacing of two parallel-oriented bars. We confirmed the critical spacing as minimum lamellar thickness (lmin) proposed previously in the Lauritzen-Hoffman (LH) model; however, the temperature dependence of excess lamellar thickness beyond lmin appears opposite to the prediction of the LH model. Moreover, it reproduces Strobl et al.'s experimental observations, but our lattice-model approach rules out any mesophase hypothesis. We proposed a kinetic model combining intramolecular secondary nucleation and stem elongation to explain this temperature-dependence behavior, which reconciles the controversial arguments on the microscopic mechanism of lamellar crystal growth of polymers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources