Mineral phases of calcium phosphate

Anat Rec. 1989 Jun;224(2):234-41. doi: 10.1002/ar.1092240213.


Many studies of calcium phosphate precipitation have been made using relaxation techniques in which the concentrations of the lattice ions are allowed to decrease as equilibrium is approached. Since the nature of the phases that form depend markedly on the solution composition, this decrease can lead to concomitant phase transformations during the crystallization experiments. The results of the present constant composition (CC) studies show that defect apatites may be formed under conditions of sustained supersaturation with a non-stoichiometric coefficient dependent on the pH of the growth medium. An important factor in analyzing these experiments is the initial surface modification and ion-exchange processes involving H+ and Ca2+ ions after inoculation of the supersaturated solutions. Thereafter, active growth sites may be eliminated as the crystals undergo lattice perfection. Transformation of dicalcium phosphate dihydrate to octacalcium phosphate, involving dissolution and subsequent nucleation and growth of the new phase, is also influenced by surface roughening of the initial phase. Typical inhibitors that reduce the rate of growth of seed crystals in supersaturated solutions may actually induce the nucleation of calcium phosphate phases when immobilized on inert surfaces. This may be a factor in the modulation of crystal growth in many biological systems.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Calcium Phosphates / metabolism*
  • Chemical Precipitation
  • Crystallization
  • In Vitro Techniques
  • Kinetics
  • Minerals / metabolism*


  • Calcium Phosphates
  • Minerals
  • alpha-tricalcium phosphate
  • tetracalcium phosphate
  • calcium phosphate, monobasic, anhydrous
  • calcium phosphate
  • calcium phosphate, dibasic, anhydrous