Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Feb 16;88(4):2296-302.
doi: 10.1021/acs.analchem.5b04136. Epub 2016 Jan 14.

Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas

Affiliations

Shock Wave Mediated Plume Chemistry for Molecular Formation in Laser Ablation Plasmas

Sivanandan S Harilal et al. Anal Chem. .

Abstract

Although it is relatively straightforward to measure the ionic, atomic, molecular, and particle emission features from laser ablation plumes, the associated kinetic and thermodynamic development leading to molecular and nanocluster formation remain one of the most important topics of analytical chemistry and material science. Very little is known, for instance, about the evolutionary paths of molecular and nanocluster formation and its relation to laser plume hydrodynamics. This is, to a large extent; due to the complexity of numerous physical processes that coexist in a transient laser-plasma system. Here, we report the formation mechanisms of molecules during complex interactions of a laser-produced plasma plume expanding from a high purity aluminum metal target into ambient air. It is found that the plume hydrodynamics plays a great role in redefining the plasma thermodynamics and molecular formation. Early in the plasma expansion, the generated shock wave at the plume edge acts as a barrier for the combustion process and molecular formation is prevalent after the shock wave collapse. The temporally and spatially resolved contour mapping of atoms and molecules in laser ablation plumes highlight the formation routes and persistence of species in the plasma and their relation to plume hydrodynamics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources