Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction

Phys Med Biol. 2016 Jan 21;61(2):906-22. doi: 10.1088/0031-9155/61/2/906. Epub 2016 Jan 7.

Abstract

Change in PET-based textural features has shown promise in predicting cancer response to treatment. However, contouring tumour volumes on longitudinal scans is time-consuming. This study investigated the usefulness of contour propagation in texture analysis for the purpose of pathologic response prediction in esophageal cancer. Forty-five esophageal cancer patients underwent PET/CT scans before and after chemo-radiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumour ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. PET images were converted into 256 discrete values. Co-occurrence, run-length, and size zone matrix textures were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs from different algorithms were compared using Dice similarity index (DSI). Contours propagated by the fast-demons, fast-free-form and rigid algorithms did not fully capture the high FDG uptake regions of tumours. Fast-demons propagated ROIs had the least agreement with other contours (DSI = 58%). Moderate to substantial overlap were found in the ROIs propagated by all other algorithms (DSI = 69%-79%). Rigidly propagated ROIs with co-occurrence texture failed to significantly differentiate between responders and non-responders (AUC = 0.58, q-value = 0.33), while the differentiation was significant with other textures (AUC = 0.71-0.73, p < 0.009). Among the deformable algorithms, fast-demons (AUC = 0.68-0.70, q-value < 0.03) and fast-free-form (AUC = 0.69-0.74, q-value < 0.04) were the least predictive. ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC = 0.72-0.78, q-value < 0.01). Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, fast-demons, fast-free-form, and rigid algorithms should be applied with care due to their inferior performance compared to other algorithms.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Algorithms*
  • Esophageal Neoplasms / diagnostic imaging*
  • Esophageal Neoplasms / drug therapy
  • Esophageal Neoplasms / radiotherapy
  • Female
  • Humans
  • Male
  • Middle Aged
  • Multimodal Imaging / methods*
  • Positron-Emission Tomography / methods*
  • Tomography, X-Ray Computed / methods*