The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV) Infected Glioblastoma Cells

Cell Physiol Biochem. 2016;38(1):94-109. doi: 10.1159/000438612. Epub 2016 Jan 8.


Background/aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV) is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM). In addition, the HCMV Immediate Early-1 protein (IE1) is expressed in >90% of tumors analyzed.

Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells) shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells.

Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV.

Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

MeSH terms

  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Cytomegalovirus / metabolism
  • Cytomegalovirus / physiology*
  • Glioblastoma / metabolism
  • Glioblastoma / pathology
  • HEK293 Cells
  • Humans
  • Immediate-Early Proteins / genetics
  • Immediate-Early Proteins / metabolism
  • Microscopy, Fluorescence
  • RNA Interference
  • RNA, Small Interfering / metabolism
  • Time-Lapse Imaging
  • rho GTP-Binding Proteins / antagonists & inhibitors
  • rho GTP-Binding Proteins / genetics
  • rho GTP-Binding Proteins / metabolism*
  • rhoA GTP-Binding Protein / antagonists & inhibitors
  • rhoA GTP-Binding Protein / genetics
  • rhoA GTP-Binding Protein / metabolism*
  • rhoB GTP-Binding Protein / antagonists & inhibitors
  • rhoB GTP-Binding Protein / genetics
  • rhoB GTP-Binding Protein / metabolism*
  • rhoC GTP-Binding Protein


  • IE1 protein, cytomegalovirus
  • Immediate-Early Proteins
  • RNA, Small Interfering
  • RHOC protein, human
  • rho GTP-Binding Proteins
  • rhoA GTP-Binding Protein
  • rhoB GTP-Binding Protein
  • rhoC GTP-Binding Protein