Simultaneous acquisition of (99m)Tc- and (123)I-labeled radiotracers using a preclinical SPECT scanner with CZT detectors

Ann Nucl Med. 2016 May;30(4):263-71. doi: 10.1007/s12149-015-1055-6. Epub 2016 Jan 8.

Abstract

Objective: Simultaneous acquisition of (99m)Tc and (123)I was evaluated using a preclinical SPECT scanner with cadmium zinc telluride (CZT)-based detectors.

Methods: 10-ml cylindrical syringes contained about 37 MBq (99m)Tc-tetrofosmin ((99m)Tc-TF) or 37 MBq (123)I-15-(p-iodophenyl)-3R,S-methyl pentadecanoic acid ((123)I-BMIPP) were used to assess the relationship between these SPECT radioactive counts and radioactivity. Two 10-ml syringes contained 100 or 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP to assess the influence of (99m)Tc upscatter and (123)I downscatter, respectively. A rat-sized cylindrical phantom also contained both 100 or 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP. The two 10-ml syringes and phantom were scanned using a pinhole collimator for rats. Myocardial infarction model rats were examined using 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP. Two 1-ml syringes contained 105 MBq (99m)Tc-labeled hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) and 35 MBq (123)I-labeled N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ((123)I-FP-CIT). The two 1-ml syringes were scanned using a pinhole collimator for mice. Normal mice were examined using 105 MBq (99m)Tc-HMPAO and 35 MBq (123)I-FP-CIT.

Results: The relationship between SPECT radioactive counts and radioactivity was excellent. Downscatter contamination of (123)I-BMIPP exhibited fewer radioactive counts for 300 MBq (99m)Tc-TF without scatter correction (SC) in 125-150 keV. There was no upscatter contamination of (99m)Tc-TF in 150-175 keV. In the rat-sized phantom, the radioactive count ratio decreased to 4.0 % for 300 MBq (99m)Tc-TF without SC in 125-150 keV. In the rats, myocardial images and radioactive counts of (99m)Tc-TF with the dual tracer were identical to those of the (99m)Tc-TF single injection. Downscatter contamination of (123)I-FP-CIT was 4.2 % without SC in 125-150 keV. In the first injection of (99m)Tc-HMPAO and second injection of (123)I-FP-CIT, brain images and radioactive counts of (99m)Tc-HMPAO with the dual tracer in normal mice also were the similar to those of the (99m)Tc-HMPAO single injection. In the first injection of (123)I-FP-CIT and second injection of (99m)Tc-HMPAO, the brain images and radioactive counts with the dual tracer were not much different from those of the (123)I-FP-CIT single injection.

Conclusions: Dual-tracer imaging of (99m)Tc- and (123)I-labeled radiotracers is feasible in a preclinical SPECT scanner with CZT detector. When higher radioactivity of (99m)Tc-labeled radiotracers relative to (123)I-labeled radiotracers is applied, correction methods are not necessarily required for the quantification of (99m)Tc- and (123)I-labeled radiotracers when using a preclinical SPECT scanner with CZT detector.

Keywords: 123I; 99mTc; Cadmium zinc telluride; Dual tracer; Small animal SPECT scanner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cadmium*
  • Image Processing, Computer-Assisted
  • Iodine Radioisotopes*
  • Isotope Labeling
  • Mice
  • Radioactive Tracers
  • Rats
  • Rats, Wistar
  • Semiconductors*
  • Technetium*
  • Tellurium*
  • Time Factors
  • Tomography, Emission-Computed, Single-Photon / instrumentation*
  • Zinc*

Substances

  • CdZnTe
  • Iodine Radioisotopes
  • Radioactive Tracers
  • Cadmium
  • Technetium
  • Zinc
  • Tellurium