Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances

J Biomed Mater Res A. 2016 May;104(5):1250-75. doi: 10.1002/jbm.a.35645. Epub 2016 Jan 29.

Abstract

Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science.

Keywords: bone tissue engineering; graphene; nanotechnology; osteogenic growth factors; scaffolds.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry*
  • Biocompatible Materials / metabolism
  • Bone Regeneration*
  • Cell Proliferation
  • Ceramics / chemistry
  • Ceramics / metabolism
  • Graphite / chemistry*
  • Graphite / metabolism
  • Humans
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure
  • Prostheses and Implants
  • Stem Cells / cytology
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*

Substances

  • Biocompatible Materials
  • Bioglass
  • Graphite
  • Glass ceramics