Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis

Dev Sci. 2017 May;20(3). doi: 10.1111/desc.12372. Epub 2016 Jan 14.


Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent the strength of these associations differs systematically between non-symbolic and symbolic magnitude comparison tasks and whether age, magnitude comparison measures or mathematical competence measures are additional moderators. We investigated these questions by means of a meta-analysis. The literature search yielded 45 articles reporting 284 effect sizes found with 17,201 participants. Effect sizes were combined by means of a two-level random-effects regression model. The effect size was significantly higher for the symbolic (r = .302, 95% CI [.243, .361]) than for the non-symbolic (r = .241, 95% CI [.198, .284]) magnitude comparison task and decreased very slightly with age. The correlation was higher for solution rates and Weber fractions than for alternative measures of comparison proficiency. It was higher for mathematical competencies that rely more heavily on the processing of magnitudes (i.e. mental arithmetic and early mathematical abilities) than for others. The results support the view that magnitude processing is reliably associated with mathematical competence over the lifespan in a wide range of tasks, measures and mathematical subdomains. The association is stronger for symbolic than for non-symbolic numerical magnitude processing. So symbolic magnitude processing might be a more eligible candidate to be targeted by diagnostic screening instruments and interventions for school-aged children and for adults.

Publication types

  • Meta-Analysis
  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Aptitude
  • Child
  • Child, Preschool
  • Cognition*
  • Humans
  • Mathematical Concepts
  • Mathematics*
  • Young Adult