DISCOVERING PATIENT PHENOTYPES USING GENERALIZED LOW RANK MODELS

Pac Symp Biocomput. 2016:21:144-55.

Abstract

The practice of medicine is predicated on discovering commonalities or distinguishing characteristics among patients to inform corresponding treatment. Given a patient grouping (hereafter referred to as a phenotype), clinicians can implement a treatment pathway accounting for the underlying cause of disease in that phenotype. Traditionally, phenotypes have been discovered by intuition, experience in practice, and advancements in basic science, but these approaches are often heuristic, labor intensive, and can take decades to produce actionable knowledge. Although our understanding of disease has progressed substantially in the past century, there are still important domains in which our phenotypes are murky, such as in behavioral health or in hospital settings. To accelerate phenotype discovery, researchers have used machine learning to find patterns in electronic health records, but have often been thwarted by missing data, sparsity, and data heterogeneity. In this study, we use a flexible framework called Generalized Low Rank Modeling (GLRM) to overcome these barriers and discover phenotypes in two sources of patient data. First, we analyze data from the 2010 Healthcare Cost and Utilization Project National Inpatient Sample (NIS), which contains upwards of 8 million hospitalization records consisting of administrative codes and demographic information. Second, we analyze a small (N=1746), local dataset documenting the clinical progression of autism spectrum disorder patients using granular features from the electronic health record, including text from physician notes. We demonstrate that low rank modeling successfully captures known and putative phenotypes in these vastly different datasets.

MeSH terms

  • Autism Spectrum Disorder / diagnosis
  • Autism Spectrum Disorder / etiology
  • Computational Biology / methods*
  • Computational Biology / statistics & numerical data
  • Databases, Factual / statistics & numerical data
  • Disease Progression
  • Electronic Health Records / statistics & numerical data
  • Hospitalization / statistics & numerical data
  • Humans
  • Machine Learning
  • Models, Statistical
  • Phenotype*