The licorice pentacyclic triterpenoid component 18β-glycyrrhetinic acid enhances the activity of antibiotics against strains of methicillin-resistant Staphylococcus aureus

Eur J Clin Microbiol Infect Dis. 2016 Apr;35(4):555-62. doi: 10.1007/s10096-015-2570-z. Epub 2016 Jan 15.

Abstract

This study aimed to identify compounds that enhance the activity of current antibiotics against multidrug-resistant bacteria. Screening of a 350+ compound proprietary small molecules library revealed that the Glycyrrhiza glabra (licorice)-derived triterpenoid 18β-glycyrrhetinic acid (18β-GA) potentiated the antibacterial activity of certain antibiotics against Staphylococcus aureus. Here, we evaluated the ability of pentacyclic triterpenoids to potentiate the activity of antibiotics against strains of methicillin-resistant S. aureus (MRSA). Checkerboard assays were used to assess the minimum inhibitory concentration (MIC) of tobramycin and ten pentacyclic triterpenoids against S. aureus. The effect of 18β-GA on the MIC of different antibiotics against MRSA was also determined in an in vitro airway MRSA infection model. 18β-GA enhanced the bactericidal activity of the aminoglycosides tobramycin, gentamicin and amikacin, and of polymyxin B against two MRSA strains, reducing the MIC of these antibiotics 32-64-fold [fractional inhibitory concentration index (FICI) of 0.12-0.13]. Other β-amyrin triterpenoids and α-amyrin triterpenoids did not exert such synergistic effects. 18β-GA did not enhance the activity of antibiotics from other structural classes against the MRSA strains. In an air-exposed airway epithelial cell culture, 18β-GA enhanced the bactericidal activity of tobramycin and polymyxin B against the MRSA strain. These data demonstrate the potential of 18β-GA to synergise with certain types of antibiotics to eliminate strains of MRSA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacokinetics*
  • Cell Line
  • Drug Synergism*
  • Epithelial Cells / microbiology
  • Glycyrrhetinic Acid / analogs & derivatives*
  • Glycyrrhetinic Acid / pharmacology
  • Humans
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Microbial Sensitivity Tests
  • Microbial Viability / drug effects
  • Models, Biological

Substances

  • Anti-Bacterial Agents
  • 18alpha-glycyrrhetinic acid
  • Glycyrrhetinic Acid