Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;4(4):327-36.
doi: 10.1016/S2213-8587(15)00386-1. Epub 2016 Jan 16.

Plasma Urate Concentration and Risk of Coronary Heart Disease: A Mendelian Randomisation Analysis

Affiliations
Free PMC article

Plasma Urate Concentration and Risk of Coronary Heart Disease: A Mendelian Randomisation Analysis

Jon White et al. Lancet Diabetes Endocrinol. .
Free PMC article

Abstract

Background: Increased circulating plasma urate concentration is associated with an increased risk of coronary heart disease, but the extent of any causative effect of urate on risk of coronary heart disease is still unclear. In this study, we aimed to clarify any causal role of urate on coronary heart disease risk using Mendelian randomisation analysis.

Methods: We first did a fixed-effects meta-analysis of the observational association of plasma urate and risk of coronary heart disease. We then used a conventional Mendelian randomisation approach to investigate the causal relevance using a genetic instrument based on 31 urate-associated single nucleotide polymorphisms (SNPs). To account for potential pleiotropic associations of certain SNPs with risk factors other than urate, we additionally did both a multivariable Mendelian randomisation analysis, in which the genetic associations of SNPs with systolic and diastolic blood pressure, HDL cholesterol, and triglycerides were included as covariates, and an Egger Mendelian randomisation (MR-Egger) analysis to estimate a causal effect accounting for unmeasured pleiotropy.

Findings: In the meta-analysis of 17 prospective observational studies (166 486 individuals; 9784 coronary heart disease events) a 1 SD higher urate concentration was associated with an odds ratio (OR) for coronary heart disease of 1·07 (95% CI 1·04-1·10). The corresponding OR estimates from the conventional, multivariable adjusted, and Egger Mendelian randomisation analysis (58 studies; 198 598 individuals; 65 877 events) were 1·18 (95% CI 1·08-1·29), 1·10 (1·00-1·22), and 1·05 (0·92-1·20), respectively, per 1 SD increment in plasma urate.

Interpretation: Conventional and multivariate Mendelian randomisation analysis implicates a causal role for urate in the development of coronary heart disease, but these estimates might be inflated by hidden pleiotropy. Egger Mendelian randomisation analysis, which accounts for pleiotropy but has less statistical power, suggests there might be no causal effect. These results might help investigators to determine the priority of trials of urate lowering for the prevention of coronary heart disease compared with other potential interventions.

Funding: UK National Institute for Health Research, British Heart Foundation, and UK Medical Research Council.

Figures

Figure 1
Figure 1
Conceptual framework for the Mendelian randomisation analysis of urate concentration and risk of coronary heart disease G1–31 are genes containing urate variants that together form the multilocus instrument for urate concentration. Horizontal pleiotropy occurs when the instrument associates with traits other than urate that become confounders if also associated with coronary heart disease. Vertical pleiotropy occurs if their level is affected by urate, and does not invalidate Mendelian randomisation analysis. SNP=single nucleotide polymorphism. SBP=systolic blood pressure. DBP=diastolic blood pressure. *Multivariable Mendelian randomisation, including DBP, SBP, HDL cholesterol, and triglycerides as covariates was used to account for possible horizontal pleiotropy arising from association of the instrument with these variables. The effect of the adjustment is to block the paths indicated with red crosses. Egger Mendelian randomisation analysis was used to account for unknown or unmeasured pleiotropic confounders.
Figure 2
Figure 2
Association of individual SNPs with urate and coronary heart disease risk Estimates are derived from meta-analysis of data from several studies (appendix pp 2–3). Error bars represent 95% CIs. The numbers below the main figure correspond to the index column in the appendix (p 3) to allow cross-referencing. The slopes of the lines are instrumental variable regression estimates of the effect of urate on coronary heart disease risk with (blue) and without (red) SBP, DBP, HDL cholesterol, and triglycerides as covariates. OR=odds ratio. CHD=coronary heart disease. SNP=single nucleotide polymorphism. SBP=systolic blood pressure. DBP=diastolic blood pressure. HDL=high-density lipoprotein.
Figure 3
Figure 3
Observational and estimated causal association of plasma urate concentration risk of coronary heart disease Values represent a per 1 SD increase in urate concentration. Error bars represent 95% CIs. The vertical dotted line indicates the expectation under the null hypothesis (of no association between plasma urate and risk of coronary heart disease). SBP=systolic blood pressure. DBP=diastolic blood pressure. OR=odds ratio. UCLEB=University College London-London School of Hygiene & Tropical Medicine-Edinburgh-Bristol. HDL=high-density lipoprotein. CHD=coronary heart disease.
Figure 4
Figure 4
Comparison of observational and genetically instrumented associations between plasma urate concentration and several cardiovascular risk factors The genetically instrumented effect of urate without accounting for pleiotropic associations (A) and the genetically instrumented effect with DBP, SBP, HDL cholesterol, and triglycerides included as covariates in a multivariable Mendelian randomisation analysis (B). Error bars represent the 95% CIs. IV=instrumental variable. SBP=systolic blood pressure. DBP=diastolic blood pressure. HDL=high-density lipoprotein.
Figure 5
Figure 5
Observational association between binary traits and urate concentration against instrumental variable association for the 31 SNP instrument without covariates (A) and the 31 SNP instrument with DBP, SBP, HDL cholesterol, and triglycerides as covariates (B) Error bars represent 95% CI. OR=odds ratio. CHD=coronary heart disease. DBP=diastolic blood pressure. SBP=systolic blood pressure. HDL=high-density lipoprotein.

Comment in

Similar articles

See all similar articles

Cited by 29 articles

  • Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework.
    Cho Y, Haycock PC, Sanderson E, Gaunt TR, Zheng J, Morris AP, Davey Smith G, Hemani G. Cho Y, et al. Nat Commun. 2020 Feb 21;11(1):1010. doi: 10.1038/s41467-020-14452-4. Nat Commun. 2020. PMID: 32081875 Free PMC article.
  • Asymptomatic hyperuricaemia: a silent activator of the innate immune system.
    Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Joosten LAB, et al. Nat Rev Rheumatol. 2020 Feb;16(2):75-86. doi: 10.1038/s41584-019-0334-3. Epub 2019 Dec 10. Nat Rev Rheumatol. 2020. PMID: 31822862 Review.
  • Genetically determined serum urate levels and cardiovascular and other diseases in UK Biobank cohort: A phenome-wide mendelian randomization study.
    Li X, Meng X, He Y, Spiliopoulou A, Timofeeva M, Wei WQ, Gifford A, Yang T, Varley T, Tzoulaki I, Joshi P, Denny JC, Mckeigue P, Campbell H, Theodoratou E. Li X, et al. PLoS Med. 2019 Oct 18;16(10):e1002937. doi: 10.1371/journal.pmed.1002937. eCollection 2019 Oct. PLoS Med. 2019. PMID: 31626644 Free PMC article.
  • Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.
    Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, Sieber KB, Qiu C, Gorski M, Yu Z, Giri A, Sveinbjornsson G, Li M, Chu AY, Hoppmann A, O'Connor LJ, Prins B, Nutile T, Noce D, Akiyama M, Cocca M, Ghasemi S, van der Most PJ, Horn K, Xu Y, Fuchsberger C, Sedaghat S, Afaq S, Amin N, Ärnlöv J, Bakker SJL, Bansal N, Baptista D, Bergmann S, Biggs ML, Biino G, Boerwinkle E, Bottinger EP, Boutin TS, Brumat M, Burkhardt R, Campana E, Campbell A, Campbell H, Carroll RJ, Catamo E, Chambers JC, Ciullo M, Concas MP, Coresh J, Corre T, Cusi D, Felicita SC, de Borst MH, De Grandi A, de Mutsert R, de Vries APJ, Delgado G, Demirkan A, Devuyst O, Dittrich K, Eckardt KU, Ehret G, Endlich K, Evans MK, Gansevoort RT, Gasparini P, Giedraitis V, Gieger C, Girotto G, Gögele M, Gordon SD, Gudbjartsson DF, Gudnason V; German Chronic Kidney Disease Study, Haller T, Hamet P, Harris TB, Hayward C, Hicks AA, Hofer E, Holm H, Huang W, Hutri-Kähönen N, Hwang SJ, Ikram MA, Lewis RM, Ingelsson E, Jakobsdottir J, Jonsdottir I, Jonsson H, Joshi PK, Josyula NS, Jung B, Kähönen M, Kamatani Y, Kanai M, Kerr SM, Kiess W, Kleber ME, Koenig W, Kooner JS, Körner A, Kovacs P, Krämer BK, Kronenberg F, Kubo M, Kühnel B, La Bianca M, Lange LA, Lehne B, Lehtimäki T; Lifelines Cohort Study, Liu J, Loeffler M, Loos RJF, Lyytikäinen LP, Magi R, Mahajan A, Martin NG, März W, Mascalzoni D, Matsuda K, Meisinger C, Meitinger T, Metspalu A, Milaneschi Y; V. A. Million Veteran Program, O'Donnell CJ, Wilson OD, Gaziano JM, Mishra PP, Mohlke KL, Mononen N, Montgomery GW, Mook-Kanamori DO, Müller-Nurasyid M, Nadkarni GN, Nalls MA, Nauck M, Nikus K, Ning B, Nolte IM, Noordam R, O'Connell JR, Olafsson I, Padmanabhan S, Penninx BWJH, Perls T, Peters A, Pirastu M, Pirastu N, Pistis G, Polasek O, Ponte B, Porteous DJ, Poulain T, Preuss MH, Rabelink TJ, Raffield LM, Raitakari OT, Rettig R, Rheinberger M, Rice KM, Rizzi F, Robino A, Rudan I, Krajcoviechova A, Cifkova R, Rueedi R, Ruggiero D, Ryan KA, Saba Y, Salvi E, Schmidt H, Schmidt R, Shaffer CM, Smith AV, Smith BH, Spracklen CN, Strauch K, Stumvoll M, Sulem P, Tajuddin SM, Teren A, Thiery J, Thio CHL, Thorsteinsdottir U, Toniolo D, Tönjes A, Tremblay J, Uitterlinden AG, Vaccargiu S, van der Harst P, van Duijn CM, Verweij N, Völker U, Vollenweider P, Waeber G, Waldenberger M, Whitfield JB, Wild SH, Wilson JF, Yang Q, Zhang W, Zonderman AB, Bochud M, Wilson JG, Pendergrass SA, Ho K, Parsa A, Pramstaller PP, Psaty BM, Böger CA, Snieder H, Butterworth AS, Okada Y, Edwards TL, Stefansson K, Susztak K, Scholz M, Heid IM, Hung AM, Teumer A, Pattaro C, Woodward OM, Vitart V, Köttgen A. Tin A, et al. Nat Genet. 2019 Oct;51(10):1459-1474. doi: 10.1038/s41588-019-0504-x. Epub 2019 Oct 2. Nat Genet. 2019. PMID: 31578528 Free PMC article.
  • The association between hyperuricemia and coronary artery calcification development: A systematic review and meta-analysis.
    Liang L, Hou X, Bainey KR, Zhang Y, Tymchak W, Qi Z, Li W, Banh HL. Liang L, et al. Clin Cardiol. 2019 Nov;42(11):1079-1086. doi: 10.1002/clc.23266. Epub 2019 Sep 30. Clin Cardiol. 2019. PMID: 31571239 Free PMC article.
See all "Cited by" articles

References

    1. Terkeltaub RA. Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol. 2010;6:30–38. - PubMed
    1. Yang Q, Köttgen A, Dehghan A. Multiple genetic loci influence serum urate and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3:523–530. - PMC - PubMed
    1. Davis N. The cardiovascular and renal relations and manifestations of gout. JAMA. 1897;29:261–262.
    1. Wheeler JG, Juzwishin DM, Eriksdottir G, Gudnason V, Danesh J. Serum uric acid and coronary heart disease in 9,458 incident cases and 155,084 controls: prospective study and meta-Analysis. PLoS Med. 2005;2:236–243. - PMC - PubMed
    1. Waring WS, McKnight JA, Webb DJ, Maxwell SRJ. Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes. 2006;55:3127–3132. - PubMed

Uncited Reference

    1. Bento AP, Gaulton A, Hersey A. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42:1083–1090. - PMC - PubMed

Publication types

Grant support

Feedback