The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast

Age (Dordr). 2016 Feb;38(1):11. doi: 10.1007/s11357-015-9868-8. Epub 2016 Jan 19.

Abstract

Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

Keywords: Cell energetic; Longevity; Metabolism rate; RLS; Total lifespan; Yeast.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / genetics
  • Aging / metabolism*
  • Culture Media
  • DNA / genetics*
  • Genotype
  • Longevity / physiology*
  • Polymerase Chain Reaction
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism*

Substances

  • Culture Media
  • DNA