Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging

Int J Biol Macromol. 2016 May:86:233-41. doi: 10.1016/j.ijbiomac.2016.01.049. Epub 2016 Jan 16.

Abstract

Target-specific MRI contrast agent based on super-paramagnetic iron oxide-chitosan-folic acid (SPIONP-CS-FA) nanoparticles was fabricated by using an ionotropic gelation method, which involved the loading of SPIONPs at various concentrations into CS-FA nanoparticles by electrostatic interaction. The SPIONP-CS-FA nanoparticles were characterized by ATR-FTIR, XRD, TEM, and VSM techniques. This study revealed that the advantages of this system would be green fabrication, low cytotoxicity at iron concentrations ranging from 0.52 mg/L to 4.16 mg/L, and high water stability (pH 6) at 4°C over long periods. Average particle size and positive zeta-potential of the SPIONP-CS-FA nanoparticles was found to be 130 nm with narrow size distribution and 42 mV, respectively. In comparison to SPIONP-0.5-CS nanoparticles, SPIONP-0.5-CS-FA nanoparticles showed higher and specific cellular uptake levels into human cervical adenocarcinoma cells due to the presence of folate receptors, while in vivo results (Wistar rat) indicated that only liver tissue showed significant decreases in MR image intensity on T2 weighted images and T2* weighted images after post-injection, in comparison with other organs. Our results demonstrated that SPIONP-CS-FA nanoparticles can be applied as an either tumor or organ specific MRI contrast agents.

Keywords: Chitosan; Chitosan-folic acid nanoparticles; Ionotropic gelation; Magnetic resonance imaging (MRI); Super-paramagnetic iron oxide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Transport
  • Cell Survival / drug effects
  • Chitosan / chemistry*
  • Ferric Compounds / chemistry*
  • Ferric Compounds / metabolism
  • Ferric Compounds / toxicity
  • HeLa Cells
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Magnets / chemistry*
  • Male
  • Nanoparticles / chemistry*
  • Rats

Substances

  • Ferric Compounds
  • ferric oxide
  • Chitosan