Background: Following total hip arthroplasty, patients demonstrate compensatory movement strategies during activities of daily living such as walking and stair climbing. Movement compensations are important markers of functional decline in older adults and are related to poor functional capacity. Despite increased utilization of hip arthroplasty, persistent movement compensation, and functional performance deficits, no consensus on postoperative rehabilitation exists. Neuromuscular reeducation techniques offer a strategy to improve movement quality by emphasizing hip abductor performance and pelvic stability. This case series illustrates changes in movement strategy around the hip in response to targeted neuromuscular reeducation techniques after hip arthroplasty.
Methods: Five participants received an 8-week exercise program following total hip arthroplasty, emphasizing targeted neuromuscular reeducation techniques hallmarked by specific, weight-bearing exercise to improve hip abductor performance and pelvic stability. Five additional participants were supervised and followed for comparison.
Findings: Participants in the neuromuscular reeducation program improved their internal hip abductor moments and vertical ground reaction forces during walking and stair climbing. They also improved their functional performance and hip abductor strength outcomes.
Interpretation: Targeted neuromuscular reeducation techniques after total hip arthroplasty provided a positive effect on biomechanical outcomes, functional performance, and muscle strength. Through focused use of the hip abductor muscles, increased internal hip abductor moments were observed. This intervention potentially promotes pelvic stability, and may contribute to improved performance on tasks such as stair climbing, fast walking, and balance. The results suggest that neuromuscular reeducation offers a unique effect on movement strategy and function for patients following total hip arthroplasty.
Keywords: Gait mechanics; Hip arthroplasty; Neuromuscular reeducation; Rehabilitation.
Copyright © 2016 Elsevier Ltd. All rights reserved.