Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects

Clin Epigenetics. 2016 Jan 26;8:10. doi: 10.1186/s13148-016-0175-8. eCollection 2016.


Background: Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis.

Methods: The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)).

Results: The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs.

Conclusions: This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

Keywords: DNA methylation; GNAS; Imprinting disorders; Pseudohypoparathyroidism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Case-Control Studies
  • Chromogranins
  • DNA Methylation*
  • GTP-Binding Protein alpha Subunits, Gs / genetics*
  • Genome-Wide Association Study
  • Genomic Imprinting / genetics*
  • Humans
  • Oligonucleotide Array Sequence Analysis
  • Pseudohypoparathyroidism / genetics*


  • Chromogranins
  • GNAS protein, human
  • GTP-Binding Protein alpha Subunits, Gs