Although drug-eluting stents (DES) have greatly reduced arterial restenosis, there are persistent concerns about stent thrombosis. DES thrombosis is attributable to retarded vascular re-endothelialization due to both stent-induced flow disturbance and the inhibition by the eluted drug of endothelial cell proliferation and migration. The present computational study aims to determine the effect of DES design on both stent-induced flow disturbance and the concentration of eluted drug at the arterial luminal surface. To this end, we consider three closed-cell stent designs that resemble certain commercial stents as well as three "idealized" stents that provide insight into the impact of specific characteristics of stent design. To objectively compare the different stents, we introduce the Stent Penalty Index (SPI), a dimensionless quantity whose value increases with both the extent of flow disturbance and luminal drug concentration. Our results show that among the three closed-cell designs studied, wide cell designs lead to lower SPI and are thus expected to have a less adverse effect on vascular re-endothelialization. For the idealized stent designs, a spiral stent provides favorable SPI values, whereas an intertwined ring stent leads to an elevated SPI. The present findings shed light onto the effect of stent design on the concentration of the eluted drug at the arterial luminal surface, an important consideration in the assessment of DES performance.
Keywords: Computational simulations; Convection–diffusion; Drug-eluting stent; Endothelial wound healing; Flow disturbance; Wall shear stress.