The choice between hip prosthetic bearing surfaces in total hip replacement: a protocol for a systematic review and network meta-analysis

Syst Rev. 2016 Feb 1:5:19. doi: 10.1186/s13643-016-0189-5.

Abstract

Background: Prosthetic hip implants have many combinations of bearing surface materials, sizes, and fixation techniques, which can determine the quality of life of patients after primary total hip replacement (THR) and the likelihood of needing revision surgery. When an implant fails, patients require revision THR, which is distressing to the patient and expensive for the health care payer. Primary THR is one of the most common elective procedures performed worldwide, with over 300,000 performed annually in the USA and over 80,000 in England and Wales. It is important to review all available randomised controlled trial (RCT) evidence to determine which implant bearing surface materials, size, and fixation technique are most effective for patients.

Methods/design: This is a protocol for a systematic review and meta-analysis of RCTs comparing outcomes of hip implant bearing surfaces, size, and fixation techniques used in THR. Implant combinations compared in the literature include four bearing surface combinations (metal-on-polyethylene, metal-on-metal, ceramic-on-polyethylene, and ceramic-on-ceramic); two femoral head sizes (large vs small heads); and four fixation techniques (uncemented, cemented, hybrid, and reverse hybrids). The primary outcome will be revision surgery. We will also collect data on patient characteristics, mortality, quality of life, and other outcomes. In network meta-analysis, we will estimate the relative effectiveness of every implant bearing surface, head size (large vs small), and fixation permutation, using evidence where implants have been compared directly in an RCT and indirectly through common comparators in different RCTs.

Discussion: There has been much debate about materials used for prosthetic implants in THR. Different combinations of prosthetic materials, sizes, and fixation, can vary widely in cost and fail at different rates for different patient groups. Given the number of THRs performed yearly, and the increasing use of expensive implants, it is important to review evidence to inform surgeons, patients, and health care providers of optimal implant bearing combinations for given patient characteristics. This review will inform a cost-effectiveness model that will include evidence from other sources, to determine the most effective and cost-effective implant bearing combination for patients.

Systematic review registration: PROSPERO CRD42015019435.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arthroplasty, Replacement, Hip / instrumentation*
  • Hip Prosthesis*
  • Humans
  • Randomized Controlled Trials as Topic
  • Risk Factors
  • Systematic Reviews as Topic