A Time-Domain Reflectometry Method with Variable Needle Pulse Width for Measuring the Dielectric Properties of Materials

Sensors (Basel). 2016 Feb 4;16(2):191. doi: 10.3390/s16020191.

Abstract

Time-domain reflectometry (TDR) methods used for measuring the dielectric properties of materials mostly utilize step or needle electrical pulses of constant amplitudes and shapes. Our novel approach enables determining the dielectric relaxation time of a sample using the analysis of the amplitudes of reflected pulses of two widths, in addition to bulk dielectric permittivity and electrical conductivity commonly obtained by the TDR technique. The method was developed for various values of electrical conductivity and relaxation time using numerical simulations of a five-rod probe placed in a material with complex dielectric permittivity described by the Debye model with an added electrical conductivity term. The characterization of amplitudes of two pulses of selected widths was done with regard to the dielectric parameters of simulated materials. The required probe parameters were obtained solely from numerical simulations. Verification was performed for the probe placed in aqueous KCl solutions with 14 different electrical conductivity values. The determined relaxation time remained roughly constant and independent of electrical conductivity. The obtained electrical conductivity agreed with the reference values. Our results indicate that the relaxation time, dielectric permittivity and electrical conductivity of the tested solutions can be simultaneously determined using a simple analysis of the amplitude and reflection time of two needle pulses of different widths.

Keywords: Debye model; FDTD simulations; dielectric permittivity; relaxation time; time-domain reflectometry (TDR).

Publication types

  • Research Support, Non-U.S. Gov't