Minimal physical requirements for crystal growth self-poisoning
- PMID: 26874500
- PMCID: PMC4752544
- DOI: 10.1063/1.4941457
Minimal physical requirements for crystal growth self-poisoning
Abstract
Self-poisoning is a kinetic trap that can impair or prevent crystal growth in a wide variety of physical settings. Here we use dynamic mean-field theory and computer simulation to argue that poisoning is ubiquitous because its emergence requires only the notion that a molecule can bind in two (or more) ways to a crystal; that those ways are not energetically equivalent; and that the associated binding events occur with sufficiently unequal probability. If these conditions are met then the steady-state growth rate is in general a non-monotonic function of the thermodynamic driving force for crystal growth, which is the characteristic of poisoning. Our results also indicate that relatively small changes of system parameters could be used to induce recovery from poisoning.
Figures
Similar articles
-
Uncovering molecular processes in crystal nucleation and growth by using molecular simulation.Angew Chem Int Ed Engl. 2011 Feb 25;50(9):1996-2013. doi: 10.1002/anie.201000463. Epub 2011 Jan 26. Angew Chem Int Ed Engl. 2011. PMID: 21271625 Review.
-
Molecular-level thermodynamic and kinetic parameters for the self-assembly of apoferritin molecules into crystals.J Mol Biol. 2000 Nov 10;303(5):667-78. doi: 10.1006/jmbi.2000.4171. J Mol Biol. 2000. PMID: 11061967
-
Molecular dynamics methodology to investigate steady-state heterogeneous crystal growth.J Chem Phys. 2007 Mar 28;126(12):124703. doi: 10.1063/1.2710263. J Chem Phys. 2007. PMID: 17411148
-
Predictive Calculation of the Crystallization Tendency of Model Pharmaceuticals in the Supercooled State from Molecular Dynamics Simulations.J Phys Chem B. 2015 Aug 20;119(33):10768-83. doi: 10.1021/acs.jpcb.5b05557. Epub 2015 Aug 10. J Phys Chem B. 2015. PMID: 26226388
-
Computational studies of crystal structure and bonding.Top Curr Chem. 2012;315:1-32. doi: 10.1007/128_2011_131. Top Curr Chem. 2012. PMID: 21506002 Review.
Cited by
-
Poisoning by Purity: What Stops Stereocomplex Crystallization in Polylactide Racemate?Macromolecules. 2023 Jan 21;56(3):989-998. doi: 10.1021/acs.macromol.2c02067. eCollection 2023 Feb 14. Macromolecules. 2023. PMID: 36818575 Free PMC article.
-
Quantitative Model of Multiple Crystal Growth Rate Minima in Polymers with Regularly Spaced Substituent Groups.Macromolecules. 2024 Feb 12;57(4):1667-1676. doi: 10.1021/acs.macromol.3c02432. eCollection 2024 Feb 27. Macromolecules. 2024. PMID: 38435680 Free PMC article.
-
Catalystlike role of impurities in speeding layer-by-layer growth.Phys Rev E. 2019 Oct;100(4-1):042114. doi: 10.1103/PhysRevE.100.042114. Phys Rev E. 2019. PMID: 31770938 Free PMC article.
-
Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal.Elife. 2023 Nov 3;12:RP86939. doi: 10.7554/eLife.86939. Elife. 2023. PMID: 37921648 Free PMC article.
-
Distinct growth regimes of α-synuclein amyloid elongation.Biophys J. 2023 Jun 20;122(12):2556-2563. doi: 10.1016/j.bpj.2023.05.009. Epub 2023 May 11. Biophys J. 2023. PMID: 37170496 Free PMC article.
References
-
- Ungar G., Putra E., De Silva D., Shcherbina M., and Waddon A., Interphases and Mesophases in Polymer Crystallization I (Springer, 2005), pp. 45–87.
-
- De Yoreo J. J. and Vekilov P. G., Rev. Mineral. Geochem. 54, 57 (2003).10.2113/0540057 - DOI
-
- Schilling T. and Frenkel D., J. Phys.: Condens. Matter 16, S2029 (2004).10.1088/0953-8984/16/19/014 - DOI
-
- Higgs P. G. and Ungar G., J. Chem. Phys. 100, 640 (1994).10.1063/1.466928 - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
