The aim of the present study was to investigate the effects of Schisandra chinensis (S. chinensis) and Rhodiola rosea (R. rosea) on rats subjected to 5 h of stress, induced by water-floating followed by treadmill exercise. Hypothalamus-pituitary-adrenal (HPA) activity and c-Fos and Fos-related antigen 2 (Fra-2) mRNA expression levels in the hypothalamus of the rats were evaluated. Rats were distributed into four groups: S. chinensis (n=12), R. rosea (n=10), stress control (n=10) and quiet control (n=8). Following a training period of 6 consecutive days, the S. chinensis, R. rosea and stress control groups underwent a 3-h water-floating session in the presence of feline predators immediately followed by 2 h treadmill running to induce psychological and physical stress. Following compound stress induction, the serum levels of corticosterone (CORT), adrenocorticotropic hormone and interleukin-1β and the mRNA expression levels of hypothalamic corticotropin-releasing hormone (CRH), neuropeptide-Y, c-Fos and Fra-2 were evaluated using enzyme-linked immunosorbent assay, radioimmunoassay and quantitative polymerase chain reaction, respectively. The results indicated that S. chinensis and R. rosea markedly decreased the stress-induced elevation of CRH and peripheral CORT levels. The mRNA expression levels of c-Fos and Fra-2 in the hypothalamus were significantly increased after 5 h compound stress, and reduced levels of c-Fos expression were detected in rats treated with R. rosea. Thus, S. chinensis and R. rosea exert an anti-stress effect in rats subjected to stress by balancing the HPA axis, and possibly by reducing the expression of c-Fos in the hypothalamus.
Keywords: Rhodiola rosea; Schisandra chinensis; hypothalamus-pituitary-adrenal axis; immediate early genes; stress.