Three-dimensional structures of magnesium nanopores

Nanotechnology. 2016 Mar 29;27(12):125603. doi: 10.1088/0957-4484/27/12/125603. Epub 2016 Feb 18.

Abstract

The optimization of nanopore-based devices is closely related to the nanopore three-dimensional (3D) structures. In this paper, faceted nanopores were fabricated in magnesium (Mg) by aligning the electron beam (e-beam) along the [0001] direction. Detailed structural characterization by transmission electron microscopy reveals the existence of two 3D structures: hexagonal prism-shaped and hourglass-shaped 3D morphologies. Moreover, the 3D structures of nanopores are also found to depend on the widest nanopore diameter-to-thickness ratio (D/t). A plausible formation mechanism for different 3D structures is discussed. Our results incorporate a critical piece of information regarding the nanopore 3D structures in Mg and may serve as an important design guidance for the size- and shape-controllable fabrication of solid-state nanopores applying the e-beam sculpting technique.

Publication types

  • Research Support, Non-U.S. Gov't