Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;51(3):783-91.
doi: 10.3233/JAD-150838.

Inhibition of Histone Deacetylase 3 Restores Amyloid-β Oligomer-Induced Plasticity Deficit in Hippocampal CA1 Pyramidal Neurons

Affiliations

Inhibition of Histone Deacetylase 3 Restores Amyloid-β Oligomer-Induced Plasticity Deficit in Hippocampal CA1 Pyramidal Neurons

Kumar Krishna et al. J Alzheimers Dis. 2016.

Abstract

Neurodegenerative diseases such as Alzheimer's disease (AD) are associated with alterations in epigenetic factors leading to cognitive decline. Histone deacetylase 3 (HDAC3) is a known critical epigenetic negative regulator of learning and memory. In this study, attenuation of long-term potentiation by amyloid-β oligomer, and its reversal by specific HDAC3 inhibitor RGFP966, was performed in rat CA1 pyramidal neurons using whole cell voltage-clamp and field recording techniques. Our findings provide the first evidence that amyloid-β oligomer-induced synaptic plasticity impairment can be prevented by inhibition of HDAC3 enzyme both at the single neuron as well as in a population of neurons, thus identifying HDAC3 as a potential target for ameliorating AD related plasticity impairments.

Keywords: Amyloid-β oligomer; HDAC3; RGFP966; epigenetics; long-term potentiation; synaptic plasticity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources