Commissioning an Elekta Versa HD linear accelerator

J Appl Clin Med Phys. 2016 Jan 8;17(1):179-191. doi: 10.1120/jacmp.v17i1.5799.


The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high-dose-rate flattening filter-free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9MeV, 12 MeV, 15 MeV) and 160-leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in-plane and cross-plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross-plane penumbra values were higher than the in-plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety.

MeSH terms

  • Electrons*
  • Equipment Design
  • Humans
  • Particle Accelerators / instrumentation*
  • Phantoms, Imaging*
  • Photons*
  • Radiometry*
  • Scattering, Radiation