On-farm Campylobacter and Escherichia coli in commercial broiler chickens: Re-used bedding does not influence Campylobacter emergence and levels across sequential farming cycles

Poult Sci. 2016 May;95(5):1105-15. doi: 10.3382/ps/pew003. Epub 2016 Feb 16.


Limitations in quality bedding material have resulted in the growing need to re-use litter during broiler farming in some countries, which can be of concern from a food-safety perspective. The aim of this study was to compare the Campylobacter levels in ceca and litter across three litter treatments under commercial farming conditions. The litter treatments were (a) the use of new litter after each farming cycle; (b) an Australian partial litter re-use practice; and (c) a full litter re-use practice. The study was carried out on two farms over two years (Farm 1, from 2009-2010 and Farm 2, from 2010-2011), across three sheds (35,000 to 40,000 chickens/shed) on each farm, adopting three different litter treatments across six commercial cycles. A random sampling design was adopted to test litter and ceca for Campylobacter and Escherichia coli, prior to commercial first thin-out and final pick-up. Campylobacter levels varied little across litter practices and farming cycles on each farm and were in the range of log 8.0-9.0 CFU/g in ceca and log 4.0-6.0 MPN/g for litter. Similarly the E. coli in ceca were ∼log 7.0 CFU/g. At first thin-out and final pick-up, the statistical analysis for both litter and ceca showed that the three-way interaction (treatments by farms by times) was highly significant (P<0.01), indicating that the patterns of Campylobacter emergence/presence across time vary between the farms, cycles and pickups. The emergence and levels of both organisms were not influenced by litter treatments across the six farming cycles on both farms. Either C. jejuni or C. coli could be the dominant species across litter and ceca, and this phenomenon could not be attributed to specific litter treatments. Irrespective of the litter treatments in place, cycle 2 on Farm 2 remained Campylobacter-free. These outcomes suggest that litter treatments did not directly influence the time of emergence and levels of Campylobacter and E. coli during commercial farming.

Keywords: Campylobacter; E. coli; ceca; chickens; litter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Campylobacter / isolation & purification*
  • Campylobacter Infections / microbiology
  • Campylobacter Infections / veterinary*
  • Cecum / microbiology
  • Chickens*
  • Environmental Microbiology
  • Escherichia coli / isolation & purification*
  • Escherichia coli Infections / microbiology
  • Escherichia coli Infections / veterinary*
  • Floors and Floorcoverings*
  • Housing, Animal
  • Poultry Diseases / microbiology