In vivo administration of interleukin-1 inhibits glucose-stimulated insulin release

Diabetes Res Clin Pract. 1989 Sep 18;7(3):205-11. doi: 10.1016/0168-8227(89)90006-5.

Abstract

Recombinant interleukin-1 beta (IL-1 beta) was administered intraperitoneally for 3 days to normal C57BL/6ByJ (B6) mice. The islets from IL-1-treated and control animals were isolated and glucose-stimulated insulin secretion studied in the perifusion system. The total islet insulin content and the ultrastructure of the islets isolated from the animals treated with IL-1 did not differ from those seen in control animals. However, glucose-stimulated insulin release was significantly impaired after 3 days of in vivo administration of IL-1, either 3 micrograms/animal/day or 0.3 micrograms/animal/day. The administration of IL-1 inhibited an acute phase of glucose-induced insulin release, whereas neither basal insulin secretion nor insulin release from 10-30 min of perifusion with glucose was impaired. There was an only partial (27%) and non-significant restoration of the insulin secretory response to glucose stimulation 4 days after discontinuation of IL-1 treatment. We conclude that IL-1 administered in vivo is capable of adversely affecting pancreatic islet response to glucose stimulation. After 3 days of administration, these changes are confined to the process of insulin release, with the islet cell morphology and total insulin content being unaffected.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Glucose / analysis
  • Glucose / pharmacology
  • Insulin / metabolism*
  • Insulin Antagonists / pharmacology
  • Insulin Secretion
  • Interleukin-1 / pharmacology*
  • Islets of Langerhans / drug effects
  • Islets of Langerhans / metabolism
  • Islets of Langerhans / ultrastructure
  • Mice
  • Mice, Inbred C57BL
  • Microscopy, Electron

Substances

  • Blood Glucose
  • Insulin
  • Insulin Antagonists
  • Interleukin-1
  • Glucose