Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by Immuno-PET

J Nucl Med. 2016 Jun;57(6):967-73. doi: 10.2967/jnumed.115.171306. Epub 2016 Feb 18.


The human growth factor receptor type 2 (HER2) is overexpressed in breast as well as other types of cancer. Immuno-PET, a noninvasive imaging procedure that could assess HER2 status in both primary and metastatic lesions simultaneously, could be a valuable tool for optimizing application of HER2-targeted therapies in individual patients. Herein, we have evaluated the tumor-targeting potential of the 5F7 anti-HER2 Nanobody (single-domain antibody fragment; ∼13 kDa) after (18)F labeling by 2 methods.

Methods: The 5F7 Nanobody was labeled with (18)F using the novel residualizing label N-succinimidyl 3-((4-(4-(18)F-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ((18)F-SFBTMGMB; (18)F-RL-I) and also via the most commonly used (18)F protein-labeling prosthetic agent N-succinimidyl 3-(18)F-fluorobenzoate ((18)F-SFB). For comparison, 5F7 Nanobody was also labeled using the residualizing radioiodination agent N-succinimidyl 4-guanidinomethyl-3-(125)I-iodobenzoate ((125)I-SGMIB). Paired-label ((18)F/(125)I) internalization assays and biodistribution studies were performed on HER2-expressing BT474M1 breast carcinoma cells and in mice with BT474M1 subcutaneous xenografts, respectively. Small-animal PET/CT imaging of 5F7 Nanobody labeled using (18)F-RL-I also was performed.

Results: Internalization assays indicated that intracellularly retained radioactivity for (18)F-RL-I-5F7 was similar to that for coincubated (125)I-SGMIB-5F7, whereas that for (18)F-SFB-5F7 was lower than coincubated (125)I-SGMIB-5F7 and decreased with time. BT474M1 tumor uptake of (18)F-RL-I-5F7 was 28.97 ± 3.88 percentage injected dose per gram of tissue (%ID/g) at 1 h and 36.28 ± 14.10 %ID/g at 2 h, reduced by more than 90% on blocking with trastuzumab, indicating HER2 specificity of uptake, and was also 26%-28% higher (P < 0.05) than that of (18)F-SFB-5F7. At 2 h, the tumor-to-blood ratio for (18)F-RL-I-5F7 (47.4 ± 13.1) was significantly higher (P < 0.05) than for (18)F-SFB-5F7 (25.4 ± 10.3); however, kidney uptake was 28-36-fold higher for (18)F-RL-I-5F7.

Conclusion: (18)F-RL-I-5F7 is a promising tracer for evaluating HER2 status by immuno-PET; however, in settings in which renal background is problematic, strategies for reducing its kidney uptake may be needed.

Keywords: 18F; HER2; Nanobody; immuno-PET; residualizing label.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Transformation, Neoplastic
  • Fluorine Radioisotopes*
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Immunoconjugates / chemistry
  • Immunoconjugates / immunology*
  • Immunoconjugates / pharmacokinetics
  • Isotope Labeling
  • Mice
  • Positron Emission Tomography Computed Tomography / methods*
  • Receptor, ErbB-2 / immunology*
  • Single-Domain Antibodies / immunology*
  • Tissue Distribution


  • Fluorine Radioisotopes
  • Immunoconjugates
  • Single-Domain Antibodies
  • Receptor, ErbB-2