A gapless genome sequence of the fungus Botrytis cinerea
- PMID: 26913498
- PMCID: PMC6638203
- DOI: 10.1111/mpp.12384
A gapless genome sequence of the fungus Botrytis cinerea
Abstract
Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, a gapless, near-finished genome sequence for B. cinerea strain B05.10 is reported. The assembly comprised 18 chromosomes and was confirmed by an optical map and a genetic map based on approximately 75 000 single nucleotide polymorphism (SNP) markers. All chromosomes contained fully assembled centromeric regions, and 10 chromosomes had telomeres on both ends. The genetic map consisted of 4153 cM and a comparison of the genetic distances with the physical distances identified 40 recombination hotspots. The linkage map also identified two mutations, located in the previously described genes Bos1 and BcsdhB, that conferred resistance to the fungicides boscalid and iprodione. The genome was predicted to encode 11 701 proteins. RNAseq data from >20 different samples were used to validate and improve gene models. Manual curation of chromosome 1 revealed interesting features, such as the occurrence of a dicistronic transcript and fully overlapping genes in opposite orientations, as well as many spliced antisense transcripts. Manual curation also revealed that the untranslated regions (UTRs) of genes can be complex and long, with many UTRs exceeding lengths of 1 kb and possessing multiple introns. Community annotation is in progress.
Keywords: SMRT sequencing; genetic map; grey mould; optical map.
© 2016 BSPP and John Wiley & Sons Ltd.
Figures
Similar articles
-
Molecular characterization of boscalid resistance in field isolates of Botrytis cinerea from apple.Phytopathology. 2011 Aug;101(8):986-95. doi: 10.1094/PHYTO-01-11-0016. Phytopathology. 2011. PMID: 21469935
-
Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea).Pest Manag Sci. 2014 Dec;70(12):1884-93. doi: 10.1002/ps.3748. Epub 2014 Mar 24. Pest Manag Sci. 2014. PMID: 24481672
-
Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry.Phytopathology. 2014 Apr;104(4):396-402. doi: 10.1094/PHYTO-06-13-0156-R. Phytopathology. 2014. PMID: 24156554
-
Grey mould disease of strawberry in northern Germany: causal agents, fungicide resistance and management strategies.Appl Microbiol Biotechnol. 2019 Feb;103(4):1589-1597. doi: 10.1007/s00253-018-09590-1. Epub 2019 Jan 4. Appl Microbiol Biotechnol. 2019. PMID: 30610288 Review.
-
Mechanisms of resistance to fungicides in field strains of Botrytis cinerea.Pest Manag Sci. 2002 Sep;58(9):876-88. doi: 10.1002/ps.566. Pest Manag Sci. 2002. PMID: 12233177 Review.
Cited by
-
Silencing of the Slt2-Type MAP Kinase Bmp3 in Botrytis cinerea by Application of Exogenous dsRNA Affects Fungal Growth and Virulence on Lactuca sativa.Int J Mol Sci. 2021 May 19;22(10):5362. doi: 10.3390/ijms22105362. Int J Mol Sci. 2021. PMID: 34069750 Free PMC article.
-
Analysis of plant cell death-inducing proteins of the necrotrophic fungal pathogens Botrytis squamosa and Botrytis elliptica.Front Plant Sci. 2022 Oct 11;13:993325. doi: 10.3389/fpls.2022.993325. eCollection 2022. Front Plant Sci. 2022. PMID: 36304392 Free PMC article.
-
Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa.Front Microbiol. 2022 Mar 9;13:854852. doi: 10.3389/fmicb.2022.854852. eCollection 2022. Front Microbiol. 2022. PMID: 35356516 Free PMC article.
-
A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew.New Phytol. 2019 Mar;221(4):2176-2189. doi: 10.1111/nph.15529. Epub 2018 Nov 14. New Phytol. 2019. PMID: 30388298 Free PMC article.
-
Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea.Front Microbiol. 2018 Jul 17;9:1596. doi: 10.3389/fmicb.2018.01596. eCollection 2018. Front Microbiol. 2018. PMID: 30065716 Free PMC article.
References
-
- Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410. - PubMed
-
- Amselem, J. , Cuomo, C.A. , van Kan, J.A.L. , Viaud, M. , Benito, E.P. , Couloux, A. , Coutinho, P.M. , de Vries, R.P. , Dyer, P.S. , Fillinger, S. , Fournier, E. , Gout, L. , Hahn, M. , Kohn, L. , Lapalu, N. , Plummer, K.M. , Pradier, J.‐M. , Quévillon, E. , Sharon, A. , Simon, A. , ten Have, A. , Tudzynski, B. , Tudzynski, P. , Wincker, P. , Andrew, M. , Anthouard, V. , Beever, R.E. , Beffa, R. , Benoit, I. , Bouzid, O. , Brault, B. , Chen, Z. , Choquer, M. , Collémare, J. , Cotton, P. , Danchin, E.G. , Da Silva, C. , Gautier, A. , Giraud, C. , Giraud, T. , Gonzalez, C. , Grossetete, S. , Güldener, U. , Henrissat, B. , Howlett, B.J. , Kodira, C. , Kretschmer, M. , Lappartient, A. , Leroch, M. , Levis, C. , Mauceli, E. , Neuvéglise, C. , Oeser, B. , Pearson, M. , Poulain, J. , Poussereau, N. , Quesneville, H. , Rascle, C. , Schumacher, J. , Ségurens, B. , Sexton, A. , Silva, E. , Sirven, C. , Soanes, D.M. , Talbot, N.J. , Templeton, M. , Yandava, C. , Yarden, O. , Zeng, Q. , Rollins, J.A. , Lebrun, M.‐H. and Dickman, M. (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea . PLoS Genet. 7, e1002230. - PMC - PubMed
-
- Arazoe, T. , Miyoshi, K. , Yamato, T. , Ogawa, T. , Ohsato, S. , Arie, T. and Kuwata, S. (2015) Tailor‐made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol. Bioeng. 112, 2543–2549. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
