BK channel inactivation gates daytime excitability in the circadian clock
- PMID: 26940770
- PMCID: PMC4785228
- DOI: 10.1038/ncomms10837
BK channel inactivation gates daytime excitability in the circadian clock
Abstract
Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K(+) channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal 'ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime 'upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm.
Figures
Similar articles
-
Daily rhythmicity of large-conductance Ca2+ -activated K+ currents in suprachiasmatic nucleus neurons.Brain Res. 2006 Feb 3;1071(1):54-62. doi: 10.1016/j.brainres.2005.11.078. Epub 2006 Jan 17. Brain Res. 2006. PMID: 16412396
-
Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock.J Gen Physiol. 2018 Feb 5;150(2):259-275. doi: 10.1085/jgp.201711945. Epub 2017 Dec 13. J Gen Physiol. 2018. PMID: 29237755 Free PMC article.
-
Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons.Neurobiol Aging. 2015 Jun;36(6):2176-83. doi: 10.1016/j.neurobiolaging.2014.12.040. Epub 2015 Jan 31. Neurobiol Aging. 2015. PMID: 25735218
-
Ca(v)1.3 and BK channels for timing and regulating cell firing.Mol Neurobiol. 2010 Dec;42(3):185-98. doi: 10.1007/s12035-010-8151-3. Epub 2010 Nov 20. Mol Neurobiol. 2010. PMID: 21088933 Review.
-
It's Time for Entropic Clocks: The Roles of Random Chain Protein Sequences in Timing Ion Channel Processes Underlying Action Potential Properties.Entropy (Basel). 2023 Sep 17;25(9):1351. doi: 10.3390/e25091351. Entropy (Basel). 2023. PMID: 37761650 Free PMC article. Review.
Cited by
-
The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy.Front Neurol. 2020 Jun 23;11:520. doi: 10.3389/fneur.2020.00520. eCollection 2020. Front Neurol. 2020. PMID: 32714261 Free PMC article. Review.
-
TRESK is a key regulator of nocturnal suprachiasmatic nucleus dynamics and light adaptive responses.Nat Commun. 2020 Sep 14;11(1):4614. doi: 10.1038/s41467-020-17978-9. Nat Commun. 2020. PMID: 32929069 Free PMC article.
-
Diurnal properties of voltage-gated Ca2+ currents in suprachiasmatic nucleus and roles in action potential firing.J Physiol. 2020 May;598(9):1775-1790. doi: 10.1113/JP278327. Epub 2019 Jul 3. J Physiol. 2020. PMID: 31177540 Free PMC article.
-
Cholesterol Inhibition of Slo1 Channels Is Calcium-Dependent and Can Be Mediated by Either High-Affinity Calcium-Sensing Site in the Slo1 Cytosolic Tail.Mol Pharmacol. 2022 Mar;101(3):132-143. doi: 10.1124/molpharm.121.000392. Epub 2021 Dec 30. Mol Pharmacol. 2022. PMID: 34969832 Free PMC article.
-
Local Drd1-neurons input to subgroups of arcuate AgRP/NPY-neurons.iScience. 2022 Jun 15;25(7):104605. doi: 10.1016/j.isci.2022.104605. eCollection 2022 Jul 15. iScience. 2022. PMID: 35789850 Free PMC article.
References
-
- Hoshi T., Zagotta W. N. & Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556 (1991). - PubMed
-
- Zuhlke R. D., Pitt G. S., Deisseroth K., Tsien R. W. & Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999). - PubMed
-
- Peterson B. Z., DeMaria C. D., Adelman J. P. & Yue D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
