Accounting for size-specific predation improves our ability to predict the strength of a trophic cascade
- PMID: 26941943
- PMCID: PMC4761761
- DOI: 10.1002/ece3.1870
Accounting for size-specific predation improves our ability to predict the strength of a trophic cascade
Abstract
Predation can influence the magnitude of herbivory that grazers exert on primary producers by altering both grazer abundance and their per capita consumption rates via changes in behavior, density-dependent effects, and size. Therefore, models based solely on changes in abundance may miss key components of grazing pressure. We estimated shifts in grazing pressure associated with changes in the abundance and per capita consumption rates of sea urchins triggered by size-selective predation by sea otters (Enhydra lutris). Field surveys suggest that sea otters dramatically decreased the abundance and median size of sea urchins. Furthermore, laboratory experiments revealed that kelp consumption by sea urchins varied nonlinearly as a function of urchin size such that consumption rates increased to the 0.56 and 0.68 power of biomass for red and green urchins, respectively. This reveals that shifts in urchin size structure due to size-selective predation by sea otters alter sea urchin per capita grazing rates. Comparison of two quantitative models estimating total consumptive capacity revealed that a model incorporating shifts in urchin abundance while neglecting urchin size structure overestimated grazing pressure compared to a model that incorporated size. Consequently, incorporating shifts in urchin size better predicted field estimates of kelp abundance compared to equivalent models based on urchin abundance alone. We provide strong evidence that incorporating size-specific parameters increases our ability to describe and predict trophic interactions.
Keywords: Biomass; body size; herbivory; size‐selective predation; trophic cascade.
Figures
Similar articles
-
Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts.Proc Biol Sci. 2018 Jul 25;285(1883):20180553. doi: 10.1098/rspb.2018.0553. Proc Biol Sci. 2018. PMID: 30051864 Free PMC article.
-
Trophic cascades induced by lobster fishing are not ubiquitous in southern California kelp forests.PLoS One. 2012;7(11):e49396. doi: 10.1371/journal.pone.0049396. Epub 2012 Nov 29. PLoS One. 2012. PMID: 23209573 Free PMC article.
-
Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago.Oecologia. 2006 Jan;146(4):623-31. doi: 10.1007/s00442-005-0230-1. Epub 2005 Sep 27. Oecologia. 2006. PMID: 16193296
-
Trophic cascades result in large-scale coralline algae loss through differential grazer effects.Ecology. 2010 Dec;91(12):3584-97. doi: 10.1890/09-2059.1. Ecology. 2010. PMID: 21302830
-
Consumptive and non-consumptive effects of predators vary with the ontogeny of their prey.Ecology. 2019 May;100(5):e02649. doi: 10.1002/ecy.2649. Epub 2019 Apr 8. Ecology. 2019. PMID: 30958570
Cited by
-
Conspecific cues, not starvation, mediate barren urchin response to predation risk.Oecologia. 2022 Aug;199(4):859-869. doi: 10.1007/s00442-022-05225-5. Epub 2022 Jul 30. Oecologia. 2022. PMID: 35907124
-
Archaeological and Contemporary Evidence Indicates Low Sea Otter Prevalence on the Pacific Northwest Coast During the Late Holocene.Ecosystems. 2022;25(3):548-566. doi: 10.1007/s10021-021-00671-3. Epub 2021 Aug 17. Ecosystems. 2022. PMID: 35509679 Free PMC article.
-
Omnivore density affects community structure through multiple trophic cascades.Oecologia. 2021 Feb;195(2):397-407. doi: 10.1007/s00442-020-04836-0. Epub 2021 Jan 3. Oecologia. 2021. PMID: 33392792
-
Trophic control of cryptic coralline algal diversity.Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15080-15085. doi: 10.1073/pnas.1900506116. Epub 2019 Jul 8. Proc Natl Acad Sci U S A. 2019. PMID: 31285351 Free PMC article.
-
Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef regime shifts.Proc Biol Sci. 2018 Jul 25;285(1883):20180553. doi: 10.1098/rspb.2018.0553. Proc Biol Sci. 2018. PMID: 30051864 Free PMC article.
References
-
- Atkins, R. L. , Griffin J. N., Angelini C., O'Connor M. I., and Silliman B. R.. 2015. Consumer–plant interaction strength: importance of body size, density and metabolic biomass. Oikos 124:1274–1281. doi:10.1111/oik.01966. - DOI
-
- Black, R. , Codd C., Hebbert D., Vink S., and Burt J.. 1984. The functional significance of the relative size of Aristotle's lantern in the sea urchin Echinometramathaei (de Blainville). J. Exp. Mar. Biol. Ecol. 77:81–97.
-
- Bolnick, D. I. , Amarasekare P., Araújo M. S., Bürger R., Levine J. M., Novak M., et al. 2011. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol., 26:183–192. http://doi.org/10.1016/j.tree.2011.01.009 - DOI - PMC - PubMed
-
- Breen, P. A. , and Mann K. H.. 1976. Changing lobster abundance and the destruction of kelp beds by sea urchins. Mar. Biol. 34:137–142.
-
- Brock, R. E. 1979. An experimental study on the effects of grazing by parrotfishes and role of refuges in benthic community structure. Mar. Biol. 51:381–388. doi:10.1007/BF00389216. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
