Alu elements and DNA double-strand break repair

Mob Genet Elements. 2015 Nov 5;5(6):81-85. doi: 10.1080/2159256X.2015.1093067. eCollection 2015 Nov-Dec.

Abstract

Alu elements represent one of the most common sources of homology and homeology in the human genome. Homeologous recombination between Alu elements represents a major form of genetic instability leading to deletions and duplications. Although these types of events have been studied extensively through genomic sequencing to assess the impact of Alu elements on disease mutations and genome evolution, the overall abundance of Alu elements in the genome often makes it difficult to assess the relevance of the Alu elements to specific recombination events. We recently reported a powerful new reporter gene system that allows the assessment of various cis and trans factors on the contribution of Alu elements to various forms of genetic instability. This allowed a quantitative measurement of the influence of mismatches on Alu elements and instability. It also confirmed that homeologous Alu elements are able to stimulate non-homologous end joining events in their vicinity. This appears to be dependent on portions of the mismatch repair pathway. We are now in a position to begin to unravel the complex influences of Alu density, mismatch and location with alterations of DNA repair processes in various tissues and tumors.

Keywords: Alu; DNA repair; genomic instability; non-homologous end joining; recombination.