Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 5;20:54.
doi: 10.1186/s13054-016-1232-6.

Measuring Energy Expenditure in the Intensive Care Unit: A Comparison of Indirect Calorimetry by E-sCOVX and Quark RMR With Deltatrac II in Mechanically Ventilated Critically Ill Patients

Affiliations
Free PMC article

Measuring Energy Expenditure in the Intensive Care Unit: A Comparison of Indirect Calorimetry by E-sCOVX and Quark RMR With Deltatrac II in Mechanically Ventilated Critically Ill Patients

Martin Sundström Rehal et al. Crit Care. .
Free PMC article

Erratum in

Abstract

Background: Indirect calorimetry allows the determination of energy expenditure in critically ill patients by measuring oxygen consumption (VO2) and carbon dioxide production (VCO2). Recent studies have demonstrated variable performance of "breath-by-breath" instruments compared to mixing chamber technology. The aim of this study was to validate two modern devices (E-sCOVX and Quark RMR) against a reference method (Deltatrac II).

Method: Measurements of VO2/VCO2 with the test and reference devices were performed simultaneously over a 20-min period in mechanically ventilated adult intensive care unit patients. Accuracy and precision of instruments were analyzed using Bland-Altman plots.

Results: Forty-eight measurements in 22 patients were included for analysis. Both E-sCOVX and Quark RMR overestimated VO2 and VCO2 compared to Deltatrac II, corresponding to a 10% higher mean resting energy expenditure. Limits of agreement of resting energy expenditure within ± 2 standard deviations were ± 461 kcal/24 h (± 21% expressed as percentage error) for ΔE-sCOVX-Deltatrac II and ± 465 kcal/24 h (± 22%) for ΔQuark RMR-Deltatrac II.

Conclusion: Both test devices overestimate VO2 and VCO2 compared to Deltatrac II. The observed limits of agreement are comparable to those commonly accepted in evaluations of circulatory monitoring, and significantly less than results from predictive equations. We hypothesize that the discrepancy between methods is due to patient/ventilator-related factors that affect the synchronization of gas and spirometry waveforms.

Trial registration: Australian New Zealand Clinical Trials Registry, Trial ID ACTRN12615000205538. Date registered 3 March 2015.

Figures

Fig. 1
Fig. 1
Schematic illustration of instrument connections to the ventilator circuit. 1. HME Filter. 2. Mainstream capnography to ventilator. 3. COVX flowmeter. 4. Three-way stopcock. 5. Y-piece. 6. Quark turbine flowmeter. 7. Adapter from calibration syringe. 8. Corrugated tube. 9. Adapter for Deltatrac FiO2 sampling. 10. Evita XL ventilator. ETT Endotracheal tube, FiO 2 fraction of inspired oxygen
Fig. 2
Fig. 2
Bland-Altman diagram of VO2: E-sCOVX–Deltatrac II. Solid line: bias; dashed lines: 95 % confidence interval of bias; semi-dashed lines: limits of agreement (bias ±2 SD). VO 2 oxygen consumption
Fig. 3
Fig. 3
Bland-Altman diagram of VCO2: E-sCOVX–Deltatrac II. Solid line: bias; dashed lines: 95 % confidence interval of bias; semi-dashed lines: limits of agreement (bias ±2 SD). VCO 2 carbon dioxide production
Fig. 4
Fig. 4
Bland-Altman diagram of VO2: Quark RMR–Deltatrac II. Solid line: bias; dashed lines: 95 % confidence interval of bias; semi-dashed lines: limits of agreement (bias ±2 SD). VO 2 oxygen consumption
Fig. 5
Fig. 5
Bland-Altman diagram of VCO2: Quark RMR–Deltatrac II. Solid line: bias; dashed lines: 95 % confidence interval of bias; semi-dashed lines: limits of agreement (bias ±2 SD). VCO 2 carbon dioxide production

Similar articles

See all similar articles

Cited by 8 articles

See all "Cited by" articles

References

    1. Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, et al. ESPEN Guidelines on Enteral Nutrition: Intensive care. Clin Nutr. 2006;25(2):210–23. doi: 10.1016/j.clnu.2006.01.021. - DOI - PubMed
    1. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) JPEN J Parenter Enteral Nutr. 2009;33(3):277–316. doi: 10.1177/0148607109335234. - DOI - PubMed
    1. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17. doi: 10.1056/NEJMoa1102662. - DOI - PubMed
    1. National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;307(8):795–803. doi: 10.1001/jama.2012.137. - DOI - PMC - PubMed
    1. Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309(20):2130–8. doi: 10.1001/jama.2013.5124. - DOI - PubMed
Feedback