Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar 8;13(3):e1001971.
doi: 10.1371/journal.pmed.1001971. eCollection 2016 Mar.

Cardiovascular and Renal Outcomes of Renin-Angiotensin System Blockade in Adult Patients With Diabetes Mellitus: A Systematic Review With Network Meta-Analyses

Affiliations
Free PMC article
Review

Cardiovascular and Renal Outcomes of Renin-Angiotensin System Blockade in Adult Patients With Diabetes Mellitus: A Systematic Review With Network Meta-Analyses

Ferrán Catalá-López et al. PLoS Med. .
Free PMC article

Erratum in

Abstract

Background: Medications aimed at inhibiting the renin-angiotensin system (RAS) have been used extensively for preventing cardiovascular and renal complications in patients with diabetes, but data that compare their clinical effectiveness are limited. We aimed to compare the effects of classes of RAS blockers on cardiovascular and renal outcomes in adults with diabetes.

Methods and findings: Eligible trials were identified by electronic searches in PubMed/MEDLINE and the Cochrane Database of Systematic Reviews (1 January 2004 to 17 July 2014). Interventions of interest were angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct renin (DR) inhibitors. The primary endpoints were cardiovascular mortality, myocardial infarction, and stroke-singly and as a composite endpoint, major cardiovascular outcome-and end-stage renal disease [ESRD], doubling of serum creatinine, and all-cause mortality-singly and as a composite endpoint, progression of renal disease. Secondary endpoints were angina pectoris and hospitalization for heart failure. In all, 71 trials (103,120 participants), with a total of 14 different regimens, were pooled using network meta-analyses. When compared with ACE inhibitor, no other RAS blocker used in monotherapy and/or combination was associated with a significant reduction in major cardiovascular outcomes: ARB (odds ratio [OR] 1.02; 95% credible interval [CrI] 0.90-1.18), ACE inhibitor plus ARB (0.97; 95% CrI 0.79-1.19), DR inhibitor plus ACE inhibitor (1.32; 95% CrI 0.96-1.81), and DR inhibitor plus ARB (1.00; 95% CrI 0.73-1.38). For the risk of progression of renal disease, no significant differences were detected between ACE inhibitor and each of the remaining therapies: ARB (OR 1.10; 95% CrI 0.90-1.40), ACE inhibitor plus ARB (0.97; 95% CrI 0.72-1.29), DR inhibitor plus ACE inhibitor (0.99; 95% CrI 0.65-1.57), and DR inhibitor plus ARB (1.18; 95% CrI 0.78-1.84). No significant differences were showed between ACE inhibitors and ARBs with respect to all-cause mortality, cardiovascular mortality, myocardial infarction, stroke, angina pectoris, hospitalization for heart failure, ESRD, or doubling serum creatinine. Findings were limited by the clinical and methodological heterogeneity of the included studies. Potential inconsistency was identified in network meta-analyses of stroke and angina pectoris, limiting the conclusiveness of findings for these single endpoints.

Conclusions: In adults with diabetes, comparisons of different RAS blockers showed similar effects of ACE inhibitors and ARBs on major cardiovascular and renal outcomes. Compared with monotherapies, the combination of an ACE inhibitor and an ARB failed to provide significant benefits on major outcomes. Clinicians should discuss the balance between benefits, costs, and potential harms with individual diabetes patients before starting treatment.

Review registration: PROSPERO CRD42014014404.

Conflict of interest statement

BH has previously received funds for methodologic advice from Amgen Canada and Cornerstone Research Group for the provision of advice related to systematic reviews and meta-analysis. None of the advice is related to the content of this manuscript. All the other authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Evidence network of all treatment comparisons for all studies.
Lines represent direct comparisons within randomized controlled trials. The size of nodes is proportional to the number of randomized participants (sample size), and the width of the lines is proportional to the number of trials comparing each pair of treatments. Nodes in green represent RAS blockers (in monotherapy and/or combination therapies). Nodes in blue represent other control arms included in the evidence networks to preserve randomization. ACEi, ACE inhibitor; DRi, DR inhibitor.

Similar articles

See all similar articles

Cited by 16 articles

See all "Cited by" articles

References

    1. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries for 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743–800. 10.1016/S0140-6736(15)60692-4 - DOI - PMC - PubMed
    1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385:117–171. 10.1016/S0140-6736(14)61682-2 - DOI - PMC - PubMed
    1. GBD 2013 DALYs and HALE Collaborators, Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A, Abd-Allah F, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386:2145–2191. 10.1016/S0140-6736(15)61340-X - DOI - PMC - PubMed
    1. Clarke PM, Glasziou P, Patel A, Chalmers J, Woodward M, Harrap SB, et al. Event rates, hospital utilization, and costs associated with major complications of diabetes: a multicountry comparative analysis. PLoS Med. 2010;7:e1000236 10.1371/journal.pmed.1000236 - DOI - PMC - PubMed
    1. Sanders GD, Coeytaux R, Dolor RJ, Hasselblad V, Patel UD, Powers B, et al. Angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor antagonists (ARBs), and direct renin inhibitors for treating essential hypertension: an update 2011. June [cited 25 Jul 2015]. Rockville (Maryland): Agency for Healthcare Research and Quality. Available: http://www.ncbi.nlm.nih.gov/books/NBK61789/.

MeSH terms

Substances

Grant support

FCL and RTS are partially funded by Generalitat Valenciana (PROMETEOII/2015/021). RTS is also funded by INCLIVA and Institute of Health Carlos III (PI14/00894)/CIBERSAM. BH is supported by a New Investigator Award from the Canadian Institutes of Health Research and the Drug Safety and Effectiveness Network. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Feedback