Nanoparticle-Based Therapies for Wound Biofilm Infection: Opportunities and Challenges

IEEE Trans Nanobioscience. 2016 Apr;15(3):294-304. doi: 10.1109/TNB.2016.2527600. Epub 2016 Mar 2.

Abstract

Clinical data from human chronic wounds implicates biofilm formation with the onset of wound chronicity. Despite the development of novel antimicrobial agents, the cost and complexity of treating chronic wound infections associated with biofilms remain a serious challenge, which necessitates the development of new and alternative approaches for effective anti-biofilm treatment. Recent advancement in nanotechnology for developing a new class of nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of biofilm infections. Over the last decade, nanoparticle-based approaches against wound biofilm infection have been directed toward developing nanoparticles with intrinsic antimicrobial properties, utilizing nanoparticles for controlled antimicrobials delivery, and applying nanoparticles for antibacterial hyperthermia therapy. In addition, a strategy to functionalize nanoparticles towards enhanced penetration through the biofilm matrix has been receiving considerable interest recently by means of achieving an efficient targeting to the bacterial cells within biofilm matrix. This review summarizes and highlights the recent development of these nanoparticle-based approaches as potential therapeutics for controlling wound biofilm infection, along with current challenges that need to be overcome for their successful clinical translation.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Anti-Bacterial Agents* / therapeutic use
  • Biofilms / drug effects*
  • Humans
  • Mice
  • Nanomedicine / methods*
  • Nanoparticles* / chemistry
  • Nanoparticles* / therapeutic use
  • Wound Healing / drug effects*
  • Wound Infection / drug therapy*

Substances

  • Anti-Bacterial Agents