Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton
- PMID: 26963515
- PMCID: PMC4786210
- DOI: 10.1371/journal.pone.0150820
Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton
Abstract
Methanol is a major volatile organic compound on Earth and serves as an important carbon and energy substrate for abundant methylotrophic microbes. Previous geochemical surveys coupled with predictive models suggest that the marine contributions are exceedingly large, rivaling terrestrial sources. Although well studied in terrestrial ecosystems, methanol sources are poorly understood in the marine environment and warrant further investigation. To this end, we adapted a Purge and Trap Gas Chromatography/Mass Spectrometry (P&T-GC/MS) method which allowed reliable measurements of methanol in seawater and marine phytoplankton cultures with a method detection limit of 120 nanomolar. All phytoplankton tested (cyanobacteria: Synechococcus spp. 8102 and 8103, Trichodesmium erythraeum, and Prochlorococcus marinus), and Eukarya (heterokont diatom: Phaeodactylum tricornutum, coccolithophore: Emiliania huxleyi, cryptophyte: Rhodomonas salina, and non-diatom heterokont: Nannochloropsis oculata) produced methanol, ranging from 0.8-13.7 micromolar in culture and methanol per total cellular carbon were measured in the ranges of 0.09-0.3%. Phytoplankton culture time-course measurements displayed a punctuated production pattern with maxima near early stationary phase. Stabile isotope labeled bicarbonate incorporation experiments confirmed that methanol was produced from phytoplankton biomass. Overall, our findings suggest that phytoplankton are a major source of methanol in the upper water column of the world's oceans.
Conflict of interest statement
Figures
Similar articles
-
Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum.Appl Environ Microbiol. 2016 Nov 21;82(24):7113-7122. doi: 10.1128/AEM.01642-16. Print 2016 Dec 15. Appl Environ Microbiol. 2016. PMID: 27694241 Free PMC article.
-
A role for diatom-like silicon transporters in calcifying coccolithophores.Nat Commun. 2016 Feb 4;7:10543. doi: 10.1038/ncomms10543. Nat Commun. 2016. PMID: 26842659 Free PMC article.
-
Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton.Mar Environ Res. 2012 Feb;73:62-9. doi: 10.1016/j.marenvres.2011.11.002. Epub 2011 Nov 12. Mar Environ Res. 2012. PMID: 22130520
-
Carbon concentrating mechanisms in eukaryotic marine phytoplankton.Ann Rev Mar Sci. 2011;3:291-315. doi: 10.1146/annurev-marine-120709-142720. Ann Rev Mar Sci. 2011. PMID: 21329207 Review.
-
Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.J Phycol. 2016 Feb;52(1):10-36. doi: 10.1111/jpy.12365. Epub 2016 Jan 11. J Phycol. 2016. PMID: 26987085 Review.
Cited by
-
Stenotrophomonas rhizophila Ep2.2 inhibits growth of Botrytis cinerea through the emission of volatile organic compounds, restricts leaf infection and primes defense genes.Front Plant Sci. 2023 Oct 2;14:1235669. doi: 10.3389/fpls.2023.1235669. eCollection 2023. Front Plant Sci. 2023. PMID: 37849842 Free PMC article.
-
Distribution and diversity of 'Tectomicrobia', a deep-branching uncultivated bacterial lineage harboring rich producers of bioactive metabolites.ISME Commun. 2023 May 29;3(1):50. doi: 10.1038/s43705-023-00259-z. ISME Commun. 2023. PMID: 37248312 Free PMC article.
-
Novel Microorganisms Contribute to Biosulfidogenesis in the Deep Layer of an Acidic Pit Lake.Front Bioeng Biotechnol. 2022 Jul 13;10:867321. doi: 10.3389/fbioe.2022.867321. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35910036 Free PMC article.
-
Lanthanide-Dependent Methanol Metabolism of a Proteobacteria-Dominated Community in a Light Lanthanide-Rich Deep Environment.Int J Mol Sci. 2022 Apr 1;23(7):3947. doi: 10.3390/ijms23073947. Int J Mol Sci. 2022. PMID: 35409305 Free PMC article.
-
Exposure to different light intensities affects emission of volatiles and accumulations of both pigments and phenolics in Azolla filiculoides.Physiol Plant. 2022 Jan;174(1):e13619. doi: 10.1111/ppl.13619. Physiol Plant. 2022. PMID: 34988977 Free PMC article.
References
-
- Singh H, Chen Y, Staudt A, Jacob D, Blake D, Heikes B, et al. Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature. 2001;410(6832):1078–81. ISI:000168285500043. - PubMed
-
- Lidstrom ME. Aerobic Methylotrophic Prokaryotes. The Prokaryotes. 2006;2:618–34.
-
- Heikes BG, Chang WN, Pilson MEQ, Swift E, Singh HB, Guenther A, et al. Atmospheric methanol budget and ocean implication. Global Biogeochemical Cycles. 2002;16(4). ISI:000181208700002.
-
- Dixon JL, Beale R, Nightingale PD. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source. Biogeosciences. 2011;8(9):2707–16. WOS:000295375700021.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
