Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 524 (14), 2828-44

Four of the Six Drosophila Rhodopsin-Expressing Photoreceptors Can Mediate Circadian Entrainment in Low Light

Affiliations

Four of the Six Drosophila Rhodopsin-Expressing Photoreceptors Can Mediate Circadian Entrainment in Low Light

Alexandra Saint-Charles et al. J Comp Neurol.

Abstract

Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc.

Keywords: AB_10073917; AB_10562715; AB_10564125; AB_1500778; BDSC 109600; BDSC 7457; BDSC 7458; BDSC 7459; BDSC 8627; BDSC 8692; NORPA; RRIDs: BDSC 9048; clock synchronization; compound eye; photoreception; sleep-wake cycles.

Similar articles

See all similar articles

Cited by 12 articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback