Roles of benthic algae in the structure, function, and assessment of stream ecosystems affected by acid mine drainage

J Phycol. 2014 Jun;50(3):425-36. doi: 10.1111/jpy.12184. Epub 2014 May 6.

Abstract

Tens of thousands of stream kilometers worldwide are degraded by a legacy of acid loads, high metal concentrations, and altered habitat caused by acid mine drainage (AMD) from abandoned underground and surface mines. As the primary production base in streams, the condition of algal-dominated periphyton communities is particularly important to nutrient cycling, energy flow, and higher trophic levels. Here, we synthesize current knowledge regarding how AMD-associated stressors affect (i) algal communities and their use as ecological indicators, (ii) their functional roles in stream ecosystems, and (iii) how these findings inform management decisions and evaluation of restoration effectiveness. A growing body of research has found ecosystem simplification caused by AMD stressors. Species diversity declines, productivity decreases, and less efficient nutrient uptake and retention occur as AMD severity increases. New monitoring approaches, indices of biological condition, and attributes of algal community structure and function effectively assess AMD severity and effectiveness of management practices. Measures of ecosystem processes, such as nutrient uptake rates, extracellular enzyme activities, and metabolism, are increasingly being used as assessment tools, but remain in their infancy relative to traditional community structure-based approaches. The continued development, testing, and implementation of functional measures and their use alongside community structure metrics will further advance assessments, inform management decisions, and foster progress toward restoration goals. Algal assessments will have important roles in making progress toward improving and sustaining the water quality, ecological condition, and ecosystem services of streams in regions affected by the legacy of unregulated coal mining.

Keywords: biomonitoring; coal mines; diatoms; diversity; ecosystem services; nutrients; pH; periphyton; restoration; water quality.

Publication types

  • Review