Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun;30(6):1016-20.
doi: 10.1002/ptr.5611. Epub 2016 Mar 17.

Blockade of Androgen Markers Using a Novel Betasitosterol, Thioctic Acid and Carnitine-containing Compound in Prostate and Hair Follicle Cell-based Assays

Affiliations

Blockade of Androgen Markers Using a Novel Betasitosterol, Thioctic Acid and Carnitine-containing Compound in Prostate and Hair Follicle Cell-based Assays

Li Chen et al. Phytother Res. .

Abstract

Androgenetic alopecia (AGA) affects approximately 70% of men and 40% of women in an age-dependent manner and is partially mediated by androgen hormones. Benign prostatic hyperplasia (BPH) similarly affects 50% of the male population, rising by 10% each decade. Finasteride inhibits 5-alpha reductase (5AR) and is used to treat both disorders, despite offering limited clinical benefits accompanied by significant adverse side effects. Building on our previous work demonstrating the efficacy of naturally derived 5AR inhibitors (such as stigmasterol and beta sitosterol), we hypothesize that targeting 5AR as well as inflammatory pathways may yield improved efficacy in AGA and BPH. Here we address these dual pathomechanisms by examining the potency of a novel composition using in vitro assays of representative cell lines for AGA (hair follicle dermal papilla cells) and BPH (LNCaP prostate cells), respectively. Exposure of cells to the novel test composition down-regulated mRNA expression profiles characteristic of both disease processes, which outperformed finasteride. Changes in mRNA expression were corroborated at the protein level as assessed by western blotting. These studies provide proof of concept that novel, naturally derived compositions simultaneously targeting 5AR and inflammatory mediators may represent a rational approach to treating AGA and BPH. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: 5-alpha reductase; androgenetic alopecia; botanicals; phytotherapy.

Similar articles

See all similar articles

MeSH terms

Feedback