Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 1:143:81-87.
doi: 10.1016/j.colsurfb.2016.03.025. Epub 2016 Mar 11.

Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration

Affiliations

Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration

Xin Ma et al. Colloids Surf B Biointerfaces. .

Abstract

Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering.

Keywords: Alendronate; Bone tissue engineering; Collagen; Enzymatically degradable; Hydroxyapatite; In situ forming hydrogels.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources