Terrestrial Mammal Occupancy in the Context of Widespread Forest Loss and a Proposed Interoceanic Canal in Nicaragua's Decreasingly Remote South Caribbean Region

PLoS One. 2016 Mar 23;11(3):e0151372. doi: 10.1371/journal.pone.0151372. eCollection 2016.


Central America is experiencing rapid forest loss and habitat degradation both inside and outside of protected areas. Despite increasing deforestation, the Caribbean region of Nicaragua plays an important role in the survival or extinction of large mammal populations in Central America given that it still retains core areas of habitat for large mammal species. The proposed interoceanic canal project that would bisect the southern half of this Caribbean region represents a new threat that, combined with an advancing agricultural frontier, could affect populations of large mammal species such as jaguars, white-lipped peccaries, and Baird's tapirs. We used occupancy models to examine the relative occupancy probabilities for an assemblage of terrestrial mammals in the south Caribbean region of Nicaragua to identify current core areas for our study species and conduct a preliminary evaluation of the potential impacts of the proposed interoceanic canal. We modeled a community level distribution of eight species with varying levels of sensitivity to human encroachment and a range of habitat associations. Our model results reveal three priority areas for terrestrial mammal conservation in our study area. The mapped predictions show that the only remaining area of suitable habitat for large mammals in the path of the proposed interoceanic canal is a relatively thin strip of forest that runs along the Caribbean Coast. In light of these findings, we propose five recommendations that will help ensure the conservation of this area of the proposed canal route as suitable habitat for our study species.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biodiversity
  • Caribbean Region
  • Conservation of Natural Resources
  • Ecosystem*
  • Forests*
  • Mammals / classification*
  • Models, Theoretical
  • Nicaragua

Grant support

This work was supported by the National Science Foundation Coupled Natural and Human System Program (CNH-0815966), www.nsf.gov, to GRU; the National Science Foundation Graduate Research Fellowship (2010081992) 2010–2012, http://www.nsf.gov/, to CAJ; the Disney Worldwide Conservation Fund, 2012, 2013, https://thewaltdisneycompany.com/content/conservation-funding, to GRU; the Global Forest Watch Small Grants Program (00530), 2015, https://gfw.fluidreview.com/, to CAJ; the Liz Claiborne and Art Ortenberg Jaguar Research Grant, 2013, http://www.panthera.org/node/785, to CAJ; the Tapir Specialist Group Conservation Fund. 2012. http://www.tapirs.org/tsgcf/index.html, to CAJ; the Donald. D. Harrington Fellowship from the Graduate School at the University of Texas at Austin, http://www.utexas.edu/ogs/funding/fellowships/harrington/ CJS; the Robert E. Veselka Fellowship from the Department of Geography and the Environment at the University of Texas at Austin, http://www.utexas.edu/cola/depts/geography/events/16493, to CJS; and The Tinker Field Research Grant from the Teresa Lozano Long Institue of Latin American Studies at the University of Texas at Austin, http://www.utexas.edu/cola/insts/llilas/student-programs/funding-opportunities/graduate-funding/field-research.php, to CJS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.