Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link
- PMID: 27007615
- PMCID: PMC4829460
- DOI: 10.1021/acs.biochem.6b00145
Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link
Abstract
Peptide-derived natural products are a class of metabolites that afford the producing organism a selective advantage over other organisms in their biological niche. While the polypeptide antibiotics produced by the nonribosomal polypeptide synthetases (NRPS) are the most widely recognized, the ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging group of natural products with diverse structures and biological functions. Both the NRPS derived peptides and the RiPPs undergo extensive post-translational modifications to produce structural diversity. Here we report the first characterization of the six cysteines in forty-five (SCIFF) [Haft, D. H. and Basu M. K. (2011) J. Bacteriol. 193, 2745-2755] peptide maturase Tte1186, which is a member of the radical S-adenosyl-l-methionine (SAM) superfamily. Tte1186 catalyzes the formation of a thioether cross-link in the peptide Tte1186a encoded by an orf located upstream of the maturase, under reducing conditions in the presence of SAM. Tte1186 contains three [4Fe-4S] clusters that are indispensable for thioether cross-link formation; however, only one cluster catalyzes the reductive cleavage of SAM. Mechanistic imperatives for the reaction catalyzed by the thioether forming radical SAM maturases will be discussed.
Conflict of interest statement
Figures
Similar articles
-
SkfB Abstracts a Hydrogen Atom from Cα on SkfA To Initiate Thioether Cross-Link Formation.Biochemistry. 2016 Aug 2;55(30):4131-4. doi: 10.1021/acs.biochem.6b00598. Epub 2016 Jul 21. Biochemistry. 2016. PMID: 27410522 Free PMC article.
-
The Radical S-Adenosyl-L-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds.J Biol Chem. 2015 Apr 24;290(17):11144-66. doi: 10.1074/jbc.M115.638320. Epub 2015 Mar 16. J Biol Chem. 2015. PMID: 25778402 Free PMC article.
-
Deconvoluting the Reduction Potentials for the Three [4Fe-4S] Clusters in an AdoMet Radical SCIFF Maturase.Biochemistry. 2018 Oct 23;57(42):6050-6053. doi: 10.1021/acs.biochem.8b00846. Epub 2018 Oct 10. Biochemistry. 2018. PMID: 30272955 Free PMC article.
-
Identification and function of auxiliary iron-sulfur clusters in radical SAM enzymes.Biochim Biophys Acta. 2012 Nov;1824(11):1196-212. doi: 10.1016/j.bbapap.2012.07.009. Epub 2012 Jul 28. Biochim Biophys Acta. 2012. PMID: 22846545 Review.
-
Auxiliary iron-sulfur cofactors in radical SAM enzymes.Biochim Biophys Acta. 2015 Jun;1853(6):1316-34. doi: 10.1016/j.bbamcr.2015.01.002. Epub 2015 Jan 15. Biochim Biophys Acta. 2015. PMID: 25597998 Review.
Cited by
-
Post-translational formation of strained cyclophanes in bacteria.Nat Chem. 2020 Nov;12(11):1042-1053. doi: 10.1038/s41557-020-0519-z. Epub 2020 Aug 17. Nat Chem. 2020. PMID: 32807886
-
Metabolic functions of the human gut microbiota: the role of metalloenzymes.Nat Prod Rep. 2019 Apr 17;36(4):593-625. doi: 10.1039/c8np00074c. Nat Prod Rep. 2019. PMID: 30452039 Free PMC article. Review.
-
Mechanistic elucidation of the mycofactocin-biosynthetic radical S-adenosylmethionine protein, MftC.J Biol Chem. 2017 Aug 4;292(31):13022-13033. doi: 10.1074/jbc.M117.795682. Epub 2017 Jun 20. J Biol Chem. 2017. PMID: 28634235 Free PMC article.
-
New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products.Biochemistry. 2021 Nov 16;60(45):3347-3361. doi: 10.1021/acs.biochem.1c00469. Epub 2021 Nov 3. Biochemistry. 2021. PMID: 34730336 Free PMC article.
-
The Radical S-Adenosyl-l-methionine Enzyme MftC Catalyzes an Oxidative Decarboxylation of the C-Terminus of the MftA Peptide.Biochemistry. 2016 May 24;55(20):2813-6. doi: 10.1021/acs.biochem.6b00355. Epub 2016 May 13. Biochemistry. 2016. PMID: 27158836 Free PMC article.
References
-
- Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006;106:3468–3496. - PubMed
-
- Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol. 2004;58:453–488. - PubMed
-
- Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30:108–160. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
