Sepsis-induced myocardial dysfunction: pathophysiology and management

J Intensive Care. 2016 Mar 23:4:22. doi: 10.1186/s40560-016-0148-1. eCollection 2016.


Sepsis is aggravated by an inappropriate immune response to invading microorganisms, which occasionally leads to multiple organ failure. Several lines of evidence suggest that the ventricular myocardium is depressed during sepsis with features of diastolic dysfunction. Potential candidates responsible for septic cardiomyopathy include pathogen-associated molecular patterns (PAMPs), cytokines, and nitric oxide. Extracellular histones and high-mobility group box 1 that function as endogenous damage-associated molecular patterns (DAMPs) also contribute to the myocardial dysfunction associated with sepsis. If untreated, persistent shock causes cellular injury and the liberation of further DAMPs. Like PAMPs, DAMPs have the potential to activate inflammation, creating a vicious circle. Early infection control with adequate antibiotic care is important during septic shock to decrease PAMPs arising from invasive microorganisms. Early aggressive fluid resuscitation as well as the administration of vasopressors and inotropes is also important to reduce DAMPs generated by damaged cells although excessive volume loading, and prolonged administration of catecholamines might be harmful. This review delineates some features of septic myocardial dysfunction, assesses its most common underlying mechanisms, and briefly outlines current therapeutic strategies and potential future approaches.

Keywords: Damage-associated molecular patterns; Immune system; Infection; Septic shock; Systemic inflammatory response syndrome.

Publication types

  • Review