Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations

Am J Physiol Gastrointest Liver Physiol. 2016 May 15;310(10):G832-43. doi: 10.1152/ajpgi.00355.2015. Epub 2016 Mar 24.


Exercise stimulates hepatic mitochondrial adaptations; however, the mechanisms remain largely unknown. Here we tested whether FGF21 plays an obligatory role in exercise induced hepatic mitochondrial adaptations by testing exercise responses in FGF21 knockout mice. FGF21 knockout (FGF21-KO) and wild-type (WT) mice (11-12 wk of age) had access to voluntary running wheels for exercise (EX) or remained sedentary for 8 wk. FGF21 deficiency resulted in greater body weight, adiposity, serum cholesterol, insulin, and glucose concentrations compared with WT mice (P < 0.05). In addition, hepatic mitochondrial complete palmitate oxidation, β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity, and nuclear content of PGC-1α were 30-50% lower in FGF21-KO mice compared with WT mice (P < 0.01). EX effectively lowered body weight, adiposity, serum triglycerides, free fatty acids, and insulin and normalized mitochondrial complete palmitate oxidation in the FGF21-KO mice, whereas the reduced hepatic β-HAD activity and lowered nuclear content of PGC-1α in FGF21-KO mice were not restored by EX. In addition, EX increased hepatic CPT-1α mRNA expression and ACC phosphorylation (a marker of increased AMPK activity) and reduced hepatic triacylglycerol content in both genotypes. However, FGF21-KO mice displayed a lower EX-induced increase in the mRNA expression of the hepatic gluconeogenic gene, PEPCK, compared with WT. In conclusion, FGF21 does not appear necessary for exercise-induced systemic and hepatic mitochondrial adaptations, but the increased adiposity, hyperinsulinemia, and impairments in hepatic mitochondrial function induced by FGF21 deficiency can be partially rescued by daily wheel running exercise.

Keywords: exercise; metabolism; mitochondria; mitochondrial function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological*
  • Adipose Tissue / metabolism
  • Animals
  • Blood Glucose / metabolism
  • Body Composition
  • Carnitine O-Palmitoyltransferase / metabolism
  • Cholesterol / blood
  • Fibroblast Growth Factors / genetics*
  • Fibroblast Growth Factors / metabolism
  • Gluconeogenesis
  • Insulin / blood
  • Mice
  • Mice, Inbred C57BL
  • Mitochondria, Liver / metabolism*
  • Palmitates / metabolism
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism
  • Running*


  • Blood Glucose
  • Insulin
  • Palmitates
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Ppargc1a protein, mouse
  • fibroblast growth factor 21
  • Fibroblast Growth Factors
  • Cholesterol
  • Carnitine O-Palmitoyltransferase